84
179
v1v2 (latest)

Flightmare: A Flexible Quadrotor Simulator

Abstract

State-of-the-art quadrotor simulators have a rigid and highly-specialized structure: either are they really fast, physically accurate, or photo-realistic. In this work, we propose a novel quadrotor simulator: Flightmare. Flightmare is composed of two main components: a configurable rendering engine built on Unity and a flexible physics engine for dynamics simulation. Those two components are totally decoupled and can run independently of each other. This makes our simulator extremely fast: rendering achieves speeds of up to 230 Hz, while physics simulation of up to 200,000 Hz on a laptop. In addition, Flightmare comes with several desirable features: (i) a large multi-modal sensor suite, including an interface to extract the 3D point-cloud of the scene; (ii) an API for reinforcement learning which can simulate hundreds of quadrotors in parallel; and (iii) integration with a virtual-reality headset for interaction with the simulated environment. We demonstrate the flexibility of Flightmare by using it for two different robotic tasks: quadrotor control using deep reinforcement learning and collision-free path planning in a complex 3D environment.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.