ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.00349
  4. Cited By
POSEIDON: Privacy-Preserving Federated Neural Network Learning

POSEIDON: Privacy-Preserving Federated Neural Network Learning

1 September 2020
Sinem Sav
Apostolos Pyrgelis
J. Troncoso-Pastoriza
D. Froelicher
Jean-Philippe Bossuat
João Sá Sousa
Jean-Pierre Hubaux
    FedML
ArXivPDFHTML

Papers citing "POSEIDON: Privacy-Preserving Federated Neural Network Learning"

18 / 18 papers shown
Title
Arbitrary-Threshold Fully Homomorphic Encryption with Lower Complexity
Arbitrary-Threshold Fully Homomorphic Encryption with Lower Complexity
Yijia Chang
Songze Li
48
0
0
20 Jan 2025
TETRIS: Composing FHE Techniques for Private Functional Exploration Over
  Large Datasets
TETRIS: Composing FHE Techniques for Private Functional Exploration Over Large Datasets
Malika Izabachène
Jean-Philippe Bossuat
86
0
0
17 Dec 2024
Secure Outsourced Decryption for FHE-based Privacy-preserving Cloud
  Computing
Secure Outsourced Decryption for FHE-based Privacy-preserving Cloud Computing
Xirong Ma
Chuan Li
Yuchang Hu
Yunting Tao
Yali Jiang
Yanbin Li
Fanyu Kong
Chunpeng Ge
56
0
0
28 Jun 2024
Privacy-Preserving Federated Unlearning with Certified Client Removal
Privacy-Preserving Federated Unlearning with Certified Client Removal
Ziyao Liu
Huanyi Ye
Yu Jiang
Jiyuan Shen
Jiale Guo
Ivan Tjuawinata
Kwok-Yan Lam
MU
40
5
0
15 Apr 2024
Federated learning with differential privacy and an untrusted aggregator
Federated learning with differential privacy and an untrusted aggregator
Kunlong Liu
Trinabh Gupta
55
0
0
17 Dec 2023
FLEDGE: Ledger-based Federated Learning Resilient to Inference and
  Backdoor Attacks
FLEDGE: Ledger-based Federated Learning Resilient to Inference and Backdoor Attacks
Jorge Castillo
Phillip Rieger
Hossein Fereidooni
Qian Chen
Ahmad Sadeghi
FedML
AAML
41
8
0
03 Oct 2023
A Survey for Federated Learning Evaluations: Goals and Measures
A Survey for Federated Learning Evaluations: Goals and Measures
Di Chai
Leye Wang
Liu Yang
Junxue Zhang
Kai Chen
Qian Yang
ELM
FedML
27
21
0
23 Aug 2023
Privacy-Preserving 3-Layer Neural Network Training
Privacy-Preserving 3-Layer Neural Network Training
Jonathan Z. Chiang
24
5
0
18 Aug 2023
Scalable and Privacy-Preserving Federated Principal Component Analysis
Scalable and Privacy-Preserving Federated Principal Component Analysis
D. Froelicher
Hyunghoon Cho
Manaswitha Edupalli
João Sá Sousa
Jean-Philippe Bossuat
Apostolos Pyrgelis
J. Troncoso-Pastoriza
Bonnie Berger
Jean-Pierre Hubaux
FedML
24
15
0
31 Mar 2023
SoK: Fully Homomorphic Encryption Accelerators
SoK: Fully Homomorphic Encryption Accelerators
Junxue Zhang
Xiaodian Cheng
Liu Yang
Jinbin Hu
Ximeng Liu
Kai Chen
34
23
0
04 Dec 2022
Privacy-preserving Decentralized Federated Learning over Time-varying
  Communication Graph
Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph
Yang Lu
Zhengxin Yu
N. Suri
FedML
31
14
0
01 Oct 2022
Orchestrating Collaborative Cybersecurity: A Secure Framework for
  Distributed Privacy-Preserving Threat Intelligence Sharing
Orchestrating Collaborative Cybersecurity: A Secure Framework for Distributed Privacy-Preserving Threat Intelligence Sharing
J. Troncoso-Pastoriza
Alain Mermoud
Romain Bouyé
Francesco Marino
Jean-Philippe Bossuat
Vincent Lenders
Jean-Pierre Hubaux
37
3
0
06 Sep 2022
Verifiable Encodings for Secure Homomorphic Analytics
Verifiable Encodings for Secure Homomorphic Analytics
Sylvain Chatel
Christian Knabenhans
Apostolos Pyrgelis
Carmela Troncoso
Jean-Pierre Hubaux
33
19
0
28 Jul 2022
Hercules: Boosting the Performance of Privacy-preserving Federated
  Learning
Hercules: Boosting the Performance of Privacy-preserving Federated Learning
Guowen Xu
Xingshuo Han
Shengmin Xu
Tianwei Zhang
Hongwei Li
Xinyi Huang
R. Deng
FedML
37
16
0
11 Jul 2022
SCOTCH: An Efficient Secure Computation Framework for Secure Aggregation
SCOTCH: An Efficient Secure Computation Framework for Secure Aggregation
Yash More
Prashanthi Ramachandran
Priyam Panda
A. Mondal
Harpreet Virk
Debayan Gupta
FedML
29
11
0
19 Jan 2022
Secure Neuroimaging Analysis using Federated Learning with Homomorphic
  Encryption
Secure Neuroimaging Analysis using Federated Learning with Homomorphic Encryption
Dimitris Stripelis
Hamza Saleem
Tanmay Ghai
Nikhil J. Dhinagar
Umang Gupta
...
Greg Ver Steeg
Yu Yang
Muhammad Naveed
Paul M. Thompson
J. Ambite
FedML
48
53
0
07 Aug 2021
Encrypted Distributed Lasso for Sparse Data Predictive Control
Encrypted Distributed Lasso for Sparse Data Predictive Control
A. Alexandru
Anastasios Tsiamis
George J. Pappas
17
10
0
23 Apr 2021
Revolutionizing Medical Data Sharing Using Advanced Privacy Enhancing
  Technologies: Technical, Legal and Ethical Synthesis
Revolutionizing Medical Data Sharing Using Advanced Privacy Enhancing Technologies: Technical, Legal and Ethical Synthesis
J. Scheibner
J. Raisaro
J. Troncoso-Pastoriza
M. Ienca
J. Fellay
E. Vayena
Jean-Pierre Hubaux
18
75
0
27 Oct 2020
1