Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.13578
Cited By
Against Membership Inference Attack: Pruning is All You Need
28 August 2020
Yijue Wang
Chenghong Wang
Zigeng Wang
Shangli Zhou
Hang Liu
J. Bi
Caiwen Ding
Sanguthevar Rajasekaran
MIACV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Against Membership Inference Attack: Pruning is All You Need"
7 / 7 papers shown
Title
Trustworthy Distributed AI Systems: Robustness, Privacy, and Governance
Wenqi Wei
Ling Liu
33
16
0
02 Feb 2024
AutoReP: Automatic ReLU Replacement for Fast Private Network Inference
Hongwu Peng
Shaoyi Huang
Tong Zhou
Yukui Luo
Chenghong Wang
...
Tony Geng
Kaleel Mahmood
Wujie Wen
Xiaolin Xu
Caiwen Ding
OffRL
47
38
0
20 Aug 2023
Safety and Performance, Why not Both? Bi-Objective Optimized Model Compression toward AI Software Deployment
Jie Zhu
Leye Wang
Xiao Han
35
9
0
11 Aug 2022
A Blessing of Dimensionality in Membership Inference through Regularization
Jasper Tan
Daniel LeJeune
Blake Mason
Hamid Javadi
Richard G. Baraniuk
32
18
0
27 May 2022
A Secure and Efficient Federated Learning Framework for NLP
Jieren Deng
Chenghong Wang
Xianrui Meng
Yijue Wang
Ji Li
Sheng Lin
Shuo Han
Fei Miao
Sanguthevar Rajasekaran
Caiwen Ding
FedML
77
22
0
28 Jan 2022
Membership Inference Attacks on Machine Learning: A Survey
Hongsheng Hu
Z. Salcic
Lichao Sun
Gillian Dobbie
Philip S. Yu
Xuyun Zhang
MIACV
35
412
0
14 Mar 2021
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
191
1,032
0
06 Mar 2020
1