ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.13547
  4. Cited By
Machine learning for metal additive manufacturing: Predicting
  temperature and melt pool fluid dynamics using physics-informed neural
  networks

Machine learning for metal additive manufacturing: Predicting temperature and melt pool fluid dynamics using physics-informed neural networks

28 July 2020
Qiming Zhu
Zeliang Liu
Jinhui Yan
    PINN
    AI4CE
ArXivPDFHTML

Papers citing "Machine learning for metal additive manufacturing: Predicting temperature and melt pool fluid dynamics using physics-informed neural networks"

17 / 17 papers shown
Title
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
277
42,038
0
03 Dec 2019
Machine learning in cardiovascular flows modeling: Predicting arterial
  blood pressure from non-invasive 4D flow MRI data using physics-informed
  neural networks
Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
Georgios Kissas
Yibo Yang
E. Hwuang
W. Witschey
John A. Detre
P. Perdikaris
AI4CE
101
368
0
13 May 2019
Is it Time to Swish? Comparing Deep Learning Activation Functions Across
  NLP tasks
Is it Time to Swish? Comparing Deep Learning Activation Functions Across NLP tasks
Steffen Eger
Paul Youssef
Iryna Gurevych
LLMSV
44
76
0
09 Jan 2019
Exploring the 3D architectures of deep material network in data-driven
  multiscale mechanics
Exploring the 3D architectures of deep material network in data-driven multiscale mechanics
Zeliang Liu
C. T. Wu
3DV
AI4CE
18
145
0
02 Jan 2019
Physics-Informed CoKriging: A Gaussian-Process-Regression-Based
  Multifidelity Method for Data-Model Convergence
Physics-Informed CoKriging: A Gaussian-Process-Regression-Based Multifidelity Method for Data-Model Convergence
Xiu Yang
D. Barajas-Solano
G. Tartakovsky
A. Tartakovsky
46
77
0
24 Nov 2018
Physics Informed Deep Learning (Part II): Data-driven Discovery of
  Nonlinear Partial Differential Equations
Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINN
AI4CE
54
611
0
28 Nov 2017
Physics Informed Deep Learning (Part I): Data-driven Solutions of
  Nonlinear Partial Differential Equations
Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINN
AI4CE
68
912
0
28 Nov 2017
Machine Learning of Linear Differential Equations using Gaussian
  Processes
Machine Learning of Linear Differential Equations using Gaussian Processes
M. Raissi
George Karniadakis
54
544
0
10 Jan 2017
Why Deep Neural Networks for Function Approximation?
Why Deep Neural Networks for Function Approximation?
Shiyu Liang
R. Srikant
73
383
0
13 Oct 2016
An overview of gradient descent optimization algorithms
An overview of gradient descent optimization algorithms
Sebastian Ruder
ODL
177
6,170
0
15 Sep 2016
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
338
18,300
0
27 May 2016
3D-R2N2: A Unified Approach for Single and Multi-view 3D Object
  Reconstruction
3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction
Chris Choy
Danfei Xu
JunYoung Gwak
Kevin Chen
Silvio Savarese
3DV
74
1,710
0
02 Apr 2016
Fully Connected Deep Structured Networks
Fully Connected Deep Structured Networks
Alex Schwing
R. Urtasun
SSeg
112
308
0
09 Mar 2015
Automatic differentiation in machine learning: a survey
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
132
2,775
0
20 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
854
149,474
0
22 Dec 2014
Caffe: Convolutional Architecture for Fast Feature Embedding
Caffe: Convolutional Architecture for Fast Feature Embedding
Yangqing Jia
Evan Shelhamer
Jeff Donahue
Sergey Karayev
Jonathan Long
Ross B. Girshick
S. Guadarrama
Trevor Darrell
VLM
BDL
3DV
195
14,703
0
20 Jun 2014
Theano: new features and speed improvements
Theano: new features and speed improvements
Frédéric Bastien
Pascal Lamblin
Razvan Pascanu
James Bergstra
Ian Goodfellow
Arnaud Bergeron
Nicolas Bouchard
David Warde-Farley
Yoshua Bengio
75
1,420
0
23 Nov 2012
1