ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.13298
  4. Cited By
SEEC: Semantic Vector Federation across Edge Computing Environments

SEEC: Semantic Vector Federation across Edge Computing Environments

30 August 2020
Shalisha Witherspoon
Dean Steuer
Graham A. Bent
N. Desai
    FedML
ArXivPDFHTML

Papers citing "SEEC: Semantic Vector Federation across Edge Computing Environments"

14 / 14 papers shown
Title
Does Unsupervised Architecture Representation Learning Help Neural
  Architecture Search?
Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?
Shen Yan
Yu Zheng
Wei Ao
Xiao Zeng
Mi Zhang
SSL
AI4CE
55
101
0
12 Jun 2020
SiEVE: Semantically Encoded Video Analytics on Edge and Cloud
SiEVE: Semantically Encoded Video Analytics on Edge and Cloud
Tarek Elgamal
Shu Shi
Varun Gupta
R. Jana
Klara Nahrstedt
14
15
0
01 Jun 2020
Adaptive Gradient Sparsification for Efficient Federated Learning: An
  Online Learning Approach
Adaptive Gradient Sparsification for Efficient Federated Learning: An Online Learning Approach
Pengchao Han
Shiqiang Wang
K. Leung
FedML
47
178
0
14 Jan 2020
Advances and Open Problems in Federated Learning
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
111
6,177
0
10 Dec 2019
Federated Evaluation of On-device Personalization
Federated Evaluation of On-device Personalization
Kangkang Wang
Rajiv Mathews
Chloé Kiddon
Hubert Eichner
F. Beaufays
Daniel Ramage
FedML
43
283
0
22 Oct 2019
Federated User Representation Learning
Federated User Representation Learning
D. Bui
Kshitiz Malik
Jack Goetz
Honglei Liu
Seungwhan Moon
Anuj Kumar
Kang G. Shin
FedML
42
64
0
27 Sep 2019
Edge Intelligence: Paving the Last Mile of Artificial Intelligence with
  Edge Computing
Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge Computing
Zhi Zhou
Xu Chen
En Li
Liekang Zeng
Ke Luo
Junshan Zhang
80
1,434
0
24 May 2019
Federated Machine Learning: Concept and Applications
Federated Machine Learning: Concept and Applications
Qiang Yang
Yang Liu
Tianjian Chen
Yongxin Tong
FedML
52
2,302
0
13 Feb 2019
BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLM
SSL
SSeg
953
93,936
0
11 Oct 2018
Adaptive Federated Learning in Resource Constrained Edge Computing
  Systems
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Shiqiang Wang
Tiffany Tuor
Theodoros Salonidis
K. Leung
C. Makaya
T. He
Kevin S. Chan
200
1,698
0
14 Apr 2018
Federated Learning: Strategies for Improving Communication Efficiency
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
269
4,620
0
18 Oct 2016
node2vec: Scalable Feature Learning for Networks
node2vec: Scalable Feature Learning for Networks
Aditya Grover
J. Leskovec
152
10,825
0
03 Jul 2016
Distributed Representations of Sentences and Documents
Distributed Representations of Sentences and Documents
Quoc V. Le
Tomas Mikolov
FaML
180
9,231
0
16 May 2014
Zero-Shot Learning by Convex Combination of Semantic Embeddings
Zero-Shot Learning by Convex Combination of Semantic Embeddings
Mohammad Norouzi
Tomas Mikolov
Samy Bengio
Y. Singer
Jonathon Shlens
Andrea Frome
G. Corrado
J. Dean
VLM
54
936
0
19 Dec 2013
1