ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.13261
  4. Cited By
Benchmarking adversarial attacks and defenses for time-series data

Benchmarking adversarial attacks and defenses for time-series data

30 August 2020
Shoaib Ahmed Siddiqui
Andreas Dengel
Sheraz Ahmed
    AAML
    AI4TS
ArXivPDFHTML

Papers citing "Benchmarking adversarial attacks and defenses for time-series data"

5 / 5 papers shown
Title
Are Time-Series Foundation Models Deployment-Ready? A Systematic Study of Adversarial Robustness Across Domains
Are Time-Series Foundation Models Deployment-Ready? A Systematic Study of Adversarial Robustness Across Domains
Jiawen Zhang
Zhenwei Zhang
Shun Zheng
Xumeng Wen
Jia Li
Jiang Bian
AI4TS
AAML
120
0
0
26 May 2025
Adversarial Attacks on Deep Neural Networks for Time Series
  Classification
Adversarial Attacks on Deep Neural Networks for Time Series Classification
Hassan Ismail Fawaz
Germain Forestier
J. Weber
L. Idoumghar
Pierre-Alain Muller
AAML
42
134
0
17 Mar 2019
On Evaluating Adversarial Robustness
On Evaluating Adversarial Robustness
Nicholas Carlini
Anish Athalye
Nicolas Papernot
Wieland Brendel
Jonas Rauber
Dimitris Tsipras
Ian Goodfellow
Aleksander Madry
Alexey Kurakin
ELM
AAML
63
894
0
18 Feb 2019
Feature Denoising for Improving Adversarial Robustness
Feature Denoising for Improving Adversarial Robustness
Cihang Xie
Yuxin Wu
Laurens van der Maaten
Alan Yuille
Kaiming He
76
907
0
09 Dec 2018
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
159
14,831
1
21 Dec 2013
1