Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.12623
Cited By
From Optimizing Engagement to Measuring Value
21 August 2020
S. Milli
Luca Belli
Moritz Hardt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"From Optimizing Engagement to Measuring Value"
9 / 9 papers shown
Title
System-2 Recommenders: Disentangling Utility and Engagement in Recommendation Systems via Temporal Point-Processes
Arpit Agarwal
Nicolas Usunier
A. Lazaric
Maximilian Nickel
30
3
0
29 May 2024
From Model Performance to Claim: How a Change of Focus in Machine Learning Replicability Can Help Bridge the Responsibility Gap
Tianqi Kou
44
0
0
19 Apr 2024
Optimization's Neglected Normative Commitments
Benjamin Laufer
T. Gilbert
Helen Nissenbaum
OffRL
21
4
0
27 May 2023
Choosing the Right Weights: Balancing Value, Strategy, and Noise in Recommender Systems
S. Milli
Emma Pierson
Nikhil Garg
9
9
0
27 May 2023
Trustworthy Social Bias Measurement
Rishi Bommasani
Percy Liang
27
10
0
20 Dec 2022
Measuring Disparate Outcomes of Content Recommendation Algorithms with Distributional Inequality Metrics
Tomo Lazovich
Luca Belli
Aaron Gonzales
Amanda Bower
U. Tantipongpipat
K. Lum
Ferenc Huszár
Rumman Chowdhury
12
17
0
03 Feb 2022
The MineRL BASALT Competition on Learning from Human Feedback
Rohin Shah
Cody Wild
Steven H. Wang
Neel Alex
Brandon Houghton
...
Stephanie Milani
Nicholay Topin
Pieter Abbeel
Stuart J. Russell
Anca Dragan
28
31
0
05 Jul 2021
On component interactions in two-stage recommender systems
Jiri Hron
K. Krauth
Michael I. Jordan
Niki Kilbertus
CML
LRM
40
31
0
28 Jun 2021
Avoiding Tampering Incentives in Deep RL via Decoupled Approval
J. Uesato
Ramana Kumar
Victoria Krakovna
Tom Everitt
Richard Ngo
Shane Legg
26
14
0
17 Nov 2020
1