ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.12236
  4. Cited By
Scaled minimax optimality in high-dimensional linear regression: A
  non-convex algorithmic regularization approach

Scaled minimax optimality in high-dimensional linear regression: A non-convex algorithmic regularization approach

27 August 2020
M. Ndaoud
ArXivPDFHTML

Papers citing "Scaled minimax optimality in high-dimensional linear regression: A non-convex algorithmic regularization approach"

4 / 4 papers shown
Title
Robust and Tuning-Free Sparse Linear Regression via Square-Root Slope
Robust and Tuning-Free Sparse Linear Regression via Square-Root Slope
Stanislav Minsker
M. Ndaoud
Lan Wang
40
8
0
30 Oct 2022
Variable selection, monotone likelihood ratio and group sparsity
Variable selection, monotone likelihood ratio and group sparsity
C. Butucea
E. Mammen
M. Ndaoud
Alexandre B. Tsybakov
48
3
0
30 Dec 2021
De-biasing convex regularized estimators and interval estimation in
  linear models
De-biasing convex regularized estimators and interval estimation in linear models
Pierre C. Bellec
Cun-Hui Zhang
27
20
0
26 Dec 2019
SLOPE is Adaptive to Unknown Sparsity and Asymptotically Minimax
SLOPE is Adaptive to Unknown Sparsity and Asymptotically Minimax
Weijie Su
Emmanuel Candes
65
145
0
29 Mar 2015
1