ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.12122
  4. Cited By
Multi-scale approach for the prediction of atomic scale properties
v1v2 (latest)

Multi-scale approach for the prediction of atomic scale properties

27 August 2020
Andrea Grisafi
Jigyasa Nigam
Michele Ceriotti
ArXiv (abs)PDFHTML

Papers citing "Multi-scale approach for the prediction of atomic scale properties"

11 / 11 papers shown
Title
Wavelet Scattering Networks for Atomistic Systems with Extrapolation of
  Material Properties
Wavelet Scattering Networks for Atomistic Systems with Extrapolation of Material Properties
Paul Sinz
M. Swift
Xavier Brumwell
Jialin Liu
K. Kim
Y. Qi
M. Hirn
37
12
0
01 Jun 2020
Predicting molecular dipole moments by combining atomic partial charges
  and atomic dipoles
Predicting molecular dipole moments by combining atomic partial charges and atomic dipoles
M. Veit
D. Wilkins
Yang Yang
R. DiStasio
Michele Ceriotti
53
92
0
27 Mar 2020
Deep neural network solution of the electronic Schrödinger equation
Deep neural network solution of the electronic Schrödinger equation
J. Hermann
Zeno Schätzle
Frank Noé
242
457
0
16 Sep 2019
Feature Optimization for Atomistic Machine Learning Yields A Data-Driven
  Construction of the Periodic Table of the Elements
Feature Optimization for Atomistic Machine Learning Yields A Data-Driven Construction of the Periodic Table of the Elements
M. J. Willatt
Félix Musil
Michele Ceriotti
40
50
0
30 Jun 2018
Solid Harmonic Wavelet Scattering for Predictions of Molecule Properties
Solid Harmonic Wavelet Scattering for Predictions of Molecule Properties
Michael Eickenberg
Georgios Exarchakis
M. Hirn
S. Mallat
L. Thiry
62
70
0
01 May 2018
Deep Potential Molecular Dynamics: a scalable model with the accuracy of
  quantum mechanics
Deep Potential Molecular Dynamics: a scalable model with the accuracy of quantum mechanics
Linfeng Zhang
Jiequn Han
Han Wang
R. Car
E. Weinan
72
1,158
0
30 Jul 2017
Deep learning and the Schrödinger equation
Deep learning and the Schrödinger equation
Kyle Mills
M. Spanner
Isaac Tamblyn
61
140
0
05 Feb 2017
By-passing the Kohn-Sham equations with machine learning
By-passing the Kohn-Sham equations with machine learning
Felix Brockherde
Leslie Vogt
Li Li
M. Tuckerman
K. Burke
K. Müller
AI4CE
78
607
0
09 Sep 2016
Wavelet Scattering Regression of Quantum Chemical Energies
Wavelet Scattering Regression of Quantum Chemical Energies
M. Hirn
S. Mallat
N. Poilvert
61
95
0
16 May 2016
Finding Density Functionals with Machine Learning
Finding Density Functionals with Machine Learning
John C. Snyder
M. Rupp
K. Hansen
K. Müller
K. Burke
132
477
0
22 Dec 2011
Fast and Accurate Modeling of Molecular Atomization Energies with
  Machine Learning
Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
M. Rupp
A. Tkatchenko
K. Müller
O. A. von Lilienfeld
AI4CE
203
1,592
0
12 Sep 2011
1