Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.12122
Cited By
v1
v2 (latest)
Multi-scale approach for the prediction of atomic scale properties
27 August 2020
Andrea Grisafi
Jigyasa Nigam
Michele Ceriotti
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Multi-scale approach for the prediction of atomic scale properties"
11 / 11 papers shown
Title
Wavelet Scattering Networks for Atomistic Systems with Extrapolation of Material Properties
Paul Sinz
M. Swift
Xavier Brumwell
Jialin Liu
K. Kim
Y. Qi
M. Hirn
37
12
0
01 Jun 2020
Predicting molecular dipole moments by combining atomic partial charges and atomic dipoles
M. Veit
D. Wilkins
Yang Yang
R. DiStasio
Michele Ceriotti
53
92
0
27 Mar 2020
Deep neural network solution of the electronic Schrödinger equation
J. Hermann
Zeno Schätzle
Frank Noé
242
457
0
16 Sep 2019
Feature Optimization for Atomistic Machine Learning Yields A Data-Driven Construction of the Periodic Table of the Elements
M. J. Willatt
Félix Musil
Michele Ceriotti
40
50
0
30 Jun 2018
Solid Harmonic Wavelet Scattering for Predictions of Molecule Properties
Michael Eickenberg
Georgios Exarchakis
M. Hirn
S. Mallat
L. Thiry
62
70
0
01 May 2018
Deep Potential Molecular Dynamics: a scalable model with the accuracy of quantum mechanics
Linfeng Zhang
Jiequn Han
Han Wang
R. Car
E. Weinan
72
1,158
0
30 Jul 2017
Deep learning and the Schrödinger equation
Kyle Mills
M. Spanner
Isaac Tamblyn
61
140
0
05 Feb 2017
By-passing the Kohn-Sham equations with machine learning
Felix Brockherde
Leslie Vogt
Li Li
M. Tuckerman
K. Burke
K. Müller
AI4CE
78
607
0
09 Sep 2016
Wavelet Scattering Regression of Quantum Chemical Energies
M. Hirn
S. Mallat
N. Poilvert
61
95
0
16 May 2016
Finding Density Functionals with Machine Learning
John C. Snyder
M. Rupp
K. Hansen
K. Müller
K. Burke
132
477
0
22 Dec 2011
Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
M. Rupp
A. Tkatchenko
K. Müller
O. A. von Lilienfeld
AI4CE
203
1,592
0
12 Sep 2011
1