ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.11533
  4. Cited By
SIGL: Securing Software Installations Through Deep Graph Learning

SIGL: Securing Software Installations Through Deep Graph Learning

26 August 2020
Xueyuan Han
Xiao Yu
Thomas Pasquier
Ding Li
J. Rhee
James W. Mickens
Margo Seltzer
Haifeng Chen
ArXivPDFHTML

Papers citing "SIGL: Securing Software Installations Through Deep Graph Learning"

3 / 3 papers shown
Title
"Real Attackers Don't Compute Gradients": Bridging the Gap Between
  Adversarial ML Research and Practice
"Real Attackers Don't Compute Gradients": Bridging the Gap Between Adversarial ML Research and Practice
Giovanni Apruzzese
Hyrum S. Anderson
Savino Dambra
D. Freeman
Fabio Pierazzi
Kevin A. Roundy
AAML
31
75
0
29 Dec 2022
Flurry: a Fast Framework for Reproducible Multi-layered Provenance Graph
  Representation Learning
Flurry: a Fast Framework for Reproducible Multi-layered Provenance Graph Representation Learning
Maya Kapoor
Joshua Melton
Michael Ridenhour
Mahalavanya Sriram
Thomas Moyer
S. Krishnan
20
0
0
05 Mar 2022
Secure Namespaced Kernel Audit for Containers
Secure Namespaced Kernel Audit for Containers
S. Lim
Bogdan Stelea
Xueyuan Han
Thomas Pasquier
17
17
0
03 Nov 2021
1