ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.10857
  4. Cited By
The Advantage of Conditional Meta-Learning for Biased Regularization and
  Fine-Tuning

The Advantage of Conditional Meta-Learning for Biased Regularization and Fine-Tuning

25 August 2020
Giulia Denevi
Massimiliano Pontil
C. Ciliberto
ArXivPDFHTML

Papers citing "The Advantage of Conditional Meta-Learning for Biased Regularization and Fine-Tuning"

23 / 23 papers shown
Title
Provable Meta-Learning of Linear Representations
Provable Meta-Learning of Linear Representations
Nilesh Tripuraneni
Chi Jin
Michael I. Jordan
OOD
93
190
0
26 Feb 2020
Structured Prediction for Conditional Meta-Learning
Structured Prediction for Conditional Meta-Learning
Ruohan Wang
Y. Demiris
C. Ciliberto
CLL
25
6
0
20 Feb 2020
Theoretical Convergence of Multi-Step Model-Agnostic Meta-Learning
Theoretical Convergence of Multi-Step Model-Agnostic Meta-Learning
Kaiyi Ji
Junjie Yang
Yingbin Liang
75
49
0
18 Feb 2020
A General Framework for Consistent Structured Prediction with Implicit
  Loss Embeddings
A General Framework for Consistent Structured Prediction with Implicit Loss Embeddings
C. Ciliberto
Lorenzo Rosasco
Alessandro Rudi
98
51
0
13 Feb 2020
Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation
Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation
Risto Vuorio
Shao-Hua Sun
Hexiang Hu
Joseph J. Lim
76
218
0
30 Oct 2019
On the Convergence Theory of Gradient-Based Model-Agnostic Meta-Learning
  Algorithms
On the Convergence Theory of Gradient-Based Model-Agnostic Meta-Learning Algorithms
Alireza Fallah
Aryan Mokhtari
Asuman Ozdaglar
63
226
0
27 Aug 2019
Adaptive Gradient-Based Meta-Learning Methods
Adaptive Gradient-Based Meta-Learning Methods
M. Khodak
Maria-Florina Balcan
Ameet Talwalkar
FedML
54
355
0
06 Jun 2019
Hierarchically Structured Meta-learning
Hierarchically Structured Meta-learning
Huaxiu Yao
Ying Wei
Junzhou Huang
Z. Li
58
203
0
13 May 2019
Learning-to-Learn Stochastic Gradient Descent with Biased Regularization
Learning-to-Learn Stochastic Gradient Descent with Biased Regularization
Giulia Denevi
C. Ciliberto
Riccardo Grazzi
Massimiliano Pontil
64
109
0
25 Mar 2019
Provable Guarantees for Gradient-Based Meta-Learning
Provable Guarantees for Gradient-Based Meta-Learning
M. Khodak
Maria-Florina Balcan
Ameet Talwalkar
FedML
120
149
0
27 Feb 2019
Meta-Learning: A Survey
Meta-Learning: A Survey
Joaquin Vanschoren
FedML
OOD
53
756
0
08 Oct 2018
Meta-Learning with Latent Embedding Optimization
Meta-Learning with Latent Embedding Optimization
Andrei A. Rusu
Dushyant Rao
Jakub Sygnowski
Oriol Vinyals
Razvan Pascanu
Simon Osindero
R. Hadsell
117
1,366
0
16 Jul 2018
On First-Order Meta-Learning Algorithms
On First-Order Meta-Learning Algorithms
Alex Nichol
Joshua Achiam
John Schulman
203
2,226
0
08 Mar 2018
Black-Box Reductions for Parameter-free Online Learning in Banach Spaces
Black-Box Reductions for Parameter-free Online Learning in Banach Spaces
Ashok Cutkosky
Francesco Orabona
72
145
0
17 Feb 2018
Meta-Learning and Universality: Deep Representations and Gradient
  Descent can Approximate any Learning Algorithm
Meta-Learning and Universality: Deep Representations and Gradient Descent can Approximate any Learning Algorithm
Chelsea Finn
Sergey Levine
SSL
71
222
0
31 Oct 2017
Weighted Message Passing and Minimum Energy Flow for Heterogeneous
  Stochastic Block Models with Side Information
Weighted Message Passing and Minimum Energy Flow for Heterogeneous Stochastic Block Models with Side Information
T. Tony Cai
Tengyuan Liang
Alexander Rakhlin
41
9
0
12 Sep 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
763
11,793
0
09 Mar 2017
Coin Betting and Parameter-Free Online Learning
Coin Betting and Parameter-Free Online Learning
Francesco Orabona
D. Pál
102
165
0
12 Feb 2016
New Perspectives on k-Support and Cluster Norms
New Perspectives on k-Support and Cluster Norms
Andrew M. McDonald
Massimiliano Pontil
Dimitris Stamos
79
58
0
06 Mar 2014
A PAC-Bayesian bound for Lifelong Learning
A PAC-Bayesian bound for Lifelong Learning
Anastasia Pentina
Christoph H. Lampert
CLL
60
210
0
12 Nov 2013
A Model of Inductive Bias Learning
A Model of Inductive Bias Learning
Jonathan Baxter
100
1,210
0
01 Jun 2011
Clustered Multi-Task Learning: A Convex Formulation
Clustered Multi-Task Learning: A Convex Formulation
Laurent Jacob
Francis R. Bach
Jean-Philippe Vert
106
509
0
11 Sep 2008
A New Approach to Collaborative Filtering: Operator Estimation with
  Spectral Regularization
A New Approach to Collaborative Filtering: Operator Estimation with Spectral Regularization
Jacob D. Abernethy
Francis R. Bach
Theodoros Evgeniou
Jean-Philippe Vert
164
261
0
11 Feb 2008
1