Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.10546
Cited By
SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates
24 August 2020
Lingkai Kong
Jimeng Sun
Chao Zhang
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates"
21 / 21 papers shown
Title
Universal Approximation Theorem of Deep Q-Networks
Qian Qi
30
1
0
04 May 2025
Understanding and Mitigating Membership Inference Risks of Neural Ordinary Differential Equations
Sanghyun Hong
Fan Wu
A. Gruber
Kookjin Lee
42
0
0
12 Jan 2025
DutyTTE: Deciphering Uncertainty in Origin-Destination Travel Time Estimation
Xiaowei Mao
Yan Lin
S. Guo
Yubin Chen
Xingyu Xian
Haomin Wen
Qisen Xu
Youfang Lin
Huaiyu Wan
39
1
0
23 Aug 2024
Stable Neural Stochastic Differential Equations in Analyzing Irregular Time Series Data
YongKyung Oh
Dongyoung Lim
Sungil Kim
AI4TS
43
11
0
22 Feb 2024
Forecasting Workload in Cloud Computing: Towards Uncertainty-Aware Predictions and Transfer Learning
Andrea Rossi
Andrea Visentin
Diego Carraro
Steven D. Prestwich
Kenneth N. Brown
25
0
0
24 Feb 2023
Convergence Analysis for Training Stochastic Neural Networks via Stochastic Gradient Descent
Richard Archibald
F. Bao
Yanzhao Cao
Hui‐Jie Sun
43
2
0
17 Dec 2022
End-to-End Stochastic Optimization with Energy-Based Model
Lingkai Kong
Jiaming Cui
Yuchen Zhuang
Rui Feng
B. Prakash
Chao Zhang
13
16
0
25 Nov 2022
The Neural Process Family: Survey, Applications and Perspectives
Saurav Jha
Dong Gong
Xuesong Wang
Richard E. Turner
L. Yao
BDL
73
24
0
01 Sep 2022
Towards Learning in Grey Spatiotemporal Systems: A Prophet to Non-consecutive Spatiotemporal Dynamics
Zhengyang Zhou
Yang Kuo
Wei Sun
Binwu Wang
Mingxing Zhou
Yunan Zong
Yang Wang
AI4TS
24
3
0
17 Aug 2022
Collaborative Uncertainty Benefits Multi-Agent Multi-Modal Trajectory Forecasting
Bohan Tang
Yiqi Zhong
Chenxin Xu
Wei Wu
Ulrich Neumann
Yanfeng Wang
Ya-Qin Zhang
Siheng Chen
36
9
0
11 Jul 2022
E2V-SDE: From Asynchronous Events to Fast and Continuous Video Reconstruction via Neural Stochastic Differential Equations
Jongwan Kim
Dongjin Lee
Byunggook Na
Seongsik Park
Jeonghee Jo
Sung-Hoon Yoon
29
0
0
15 Jun 2022
Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer
Shiye Lei
Zhuozhuo Tu
Leszek Rutkowski
Feng Zhou
Li Shen
Fengxiang He
Dacheng Tao
BDL
23
2
0
12 Dec 2021
Climate Modeling with Neural Diffusion Equations
JeeHyun Hwang
Jeongwhan Choi
Hwan-Kyu Choi
Kookjin Lee
Dongeun Lee
Noseong Park
DiffM
19
22
0
11 Nov 2021
Efficient and Accurate Gradients for Neural SDEs
Patrick Kidger
James Foster
Xuechen Li
Terry Lyons
DiffM
24
60
0
27 May 2021
Accurate and Reliable Forecasting using Stochastic Differential Equations
Peng Cui
Zhijie Deng
Wenbo Hu
Jun Zhu
UQCV
28
1
0
28 Mar 2021
Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware Regression
Wanhua Li
Xiaoke Huang
Jiwen Lu
Jianjiang Feng
Jie Zhou
UQCV
30
61
0
25 Mar 2021
Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations
Winnie Xu
Ricky T. Q. Chen
Xuechen Li
D. Duvenaud
BDL
UQCV
21
46
0
12 Feb 2021
DS-UI: Dual-Supervised Mixture of Gaussian Mixture Models for Uncertainty Inference
Jiyang Xie
Zhanyu Ma
Jing-Hao Xue
Guoqiang Zhang
Jun Guo
BDL
19
11
0
17 Nov 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
197
745
0
06 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1