ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.09965
17
15

Neighbourhood-Insensitive Point Cloud Normal Estimation Network

23 August 2020
Zirui Wang
V. Prisacariu
    3DPC
ArXivPDFHTML
Abstract

We introduce a novel self-attention-based normal estimation network that is able to focus softly on relevant points and adjust the softness by learning a temperature parameter, making it able to work naturally and effectively within a large neighbourhood range. As a result, our model outperforms all existing normal estimation algorithms by a large margin, achieving 94.1% accuracy in comparison with the previous state of the art of 91.2%, with a 25x smaller model and 12x faster inference time. We also use point-to-plane Iterative Closest Point (ICP) as an application case to show that our normal estimations lead to faster convergence than normal estimations from other methods, without manually fine-tuning neighbourhood range parameters. Code available at https://code.active.vision.

View on arXiv
Comments on this paper