Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.09768
Cited By
Hierarchical Deep Learning of Multiscale Differential Equation Time-Steppers
22 August 2020
Yuying Liu
N. Kutz
Steven L. Brunton
AI4TS
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Hierarchical Deep Learning of Multiscale Differential Equation Time-Steppers"
9 / 9 papers shown
Title
When are dynamical systems learned from time series data statistically accurate?
Jeongjin Park
Nicole Yang
Nisha Chandramoorthy
AI4TS
41
4
0
09 Nov 2024
Hierarchical deep learning-based adaptive time-stepping scheme for multiscale simulations
Asif Hamid
Danish Rafiq
S. A. Nahvi
M. A. Bazaz
AI4CE
47
1
0
10 Nov 2023
Feature-adjacent multi-fidelity physics-informed machine learning for partial differential equations
Wenqian Chen
P. Stinis
OOD
AI4CE
38
7
0
21 Mar 2023
Algorithmically Designed Artificial Neural Networks (ADANNs): Higher order deep operator learning for parametric partial differential equations
Arnulf Jentzen
Adrian Riekert
Philippe von Wurstemberger
34
1
0
07 Feb 2023
Physics and Equality Constrained Artificial Neural Networks: Application to Forward and Inverse Problems with Multi-fidelity Data Fusion
S. Basir
Inanc Senocak
PINN
AI4CE
36
68
0
30 Sep 2021
Structure-preserving Sparse Identification of Nonlinear Dynamics for Data-driven Modeling
Kookjin Lee
Nathaniel Trask
P. Stinis
38
25
0
11 Sep 2021
DeepGreen: Deep Learning of Green's Functions for Nonlinear Boundary Value Problems
Craig Gin
D. Shea
Steven L. Brunton
J. Nathan Kutz
18
87
0
31 Dec 2020
Discovery of Governing Equations with Recursive Deep Neural Networks
Jia Zhao
Jarrod Mau
PINN
32
6
0
24 Sep 2020
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
C. Wehmeyer
Frank Noé
AI4CE
BDL
111
357
0
30 Oct 2017
1