ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.09090
  4. Cited By
TRU-NET: A Deep Learning Approach to High Resolution Prediction of
  Rainfall

TRU-NET: A Deep Learning Approach to High Resolution Prediction of Rainfall

20 August 2020
Rilwan A. Adewoyin
P. Dueben
P. Watson
Yulan He
Ritabrata Dutta
    AI4CE
ArXivPDFHTML

Papers citing "TRU-NET: A Deep Learning Approach to High Resolution Prediction of Rainfall"

11 / 11 papers shown
Title
A Likelihood-Based Generative Approach for Spatially Consistent
  Precipitation Downscaling
A Likelihood-Based Generative Approach for Spatially Consistent Precipitation Downscaling
Jose González-Abad
41
0
0
26 Jun 2024
Generative Diffusion-based Downscaling for Climate
Generative Diffusion-based Downscaling for Climate
Robbie A. Watt
Laura A. Mansfield
DiffM
35
3
0
27 Apr 2024
Precipitation nowcasting with generative diffusion models
Precipitation nowcasting with generative diffusion models
Andrea Asperti
Fabio Merizzi
Alberto Paparella
G. Pedrazzi
M. Angelinelli
Stefano Colamonaco
DiffM
38
19
0
13 Aug 2023
Inductive biases in deep learning models for weather prediction
Inductive biases in deep learning models for weather prediction
Jannik Thümmel
Matthias Karlbauer
S. Otte
C. Zarfl
Georg Martius
...
Thomas Scholten
Ulrich Friedrich
V. Wulfmeyer
B. Goswami
Martin Volker Butz
AI4CE
43
6
0
06 Apr 2023
Local Identifiability of Deep ReLU Neural Networks: the Theory
Local Identifiability of Deep ReLU Neural Networks: the Theory
Joachim Bona-Pellissier
Franccois Malgouyres
F. Bachoc
FAtt
67
6
0
15 Jun 2022
A Generative Deep Learning Approach to Stochastic Downscaling of
  Precipitation Forecasts
A Generative Deep Learning Approach to Stochastic Downscaling of Precipitation Forecasts
L. Harris
Andrew T. T. McRae
Matthew Chantry
P. Dueben
T. Palmer
32
106
0
05 Apr 2022
Parameter identifiability of a deep feedforward ReLU neural network
Parameter identifiability of a deep feedforward ReLU neural network
Joachim Bona-Pellissier
François Bachoc
François Malgouyres
41
15
0
24 Dec 2021
Bridging observation, theory and numerical simulation of the ocean using
  Machine Learning
Bridging observation, theory and numerical simulation of the ocean using Machine Learning
Maike Sonnewald
Redouane Lguensat
Daniel C. Jones
P. Dueben
J. Brajard
Venkatramani Balaji
AI4Cl
AI4CE
46
100
0
26 Apr 2021
Skillful Precipitation Nowcasting using Deep Generative Models of Radar
Skillful Precipitation Nowcasting using Deep Generative Models of Radar
Suman V. Ravuri
Karel Lenc
Matthew Willson
D. Kangin
Rémi R. Lam
...
R. Hadsell
Nial H. Robinson
Ellen Clancy
A. Arribas
S. Mohamed
AI4Cl
14
722
0
02 Apr 2021
Convolutional LSTM Network: A Machine Learning Approach for
  Precipitation Nowcasting
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
Xingjian Shi
Zhourong Chen
Hao Wang
Dit-Yan Yeung
W. Wong
W. Woo
236
7,906
0
13 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1