ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.08601
  4. Cited By
Neural Networks and Quantum Field Theory

Neural Networks and Quantum Field Theory

19 August 2020
James Halverson
Anindita Maiti
Keegan Stoner
ArXivPDFHTML

Papers citing "Neural Networks and Quantum Field Theory"

17 / 17 papers shown
Title
Physics-Driven Learning for Inverse Problems in Quantum Chromodynamics
Physics-Driven Learning for Inverse Problems in Quantum Chromodynamics
Gert Aarts
Kenji Fukushima
Tetsuo Hatsuda
Andreas Ipp
S. Shi
Lei Wang
K. Zhou
AI4CE
PINN
56
2
0
09 Jan 2025
On learning higher-order cumulants in diffusion models
On learning higher-order cumulants in diffusion models
Gert Aarts
Diaa E. Habibi
Lei Wang
K. Zhou
26
4
0
28 Oct 2024
Why Rectified Power Unit Networks Fail and How to Improve It: An
  Effective Theory Perspective
Why Rectified Power Unit Networks Fail and How to Improve It: An Effective Theory Perspective
Taeyoung Kim
Myungjoo Kang
30
0
0
04 Aug 2024
Equivariant Neural Tangent Kernels
Equivariant Neural Tangent Kernels
Philipp Misof
Pan Kessel
Jan E. Gerken
64
0
0
10 Jun 2024
Bayesian RG Flow in Neural Network Field Theories
Bayesian RG Flow in Neural Network Field Theories
Jessica N. Howard
Marc S. Klinger
Anindita Maiti
A. G. Stapleton
68
1
0
27 May 2024
Bayesian Renormalization
Bayesian Renormalization
D. Berman
Marc S. Klinger
A. G. Stapleton
32
16
0
17 May 2023
Renormalization in the neural network-quantum field theory
  correspondence
Renormalization in the neural network-quantum field theory correspondence
Harold Erbin
Vincent Lahoche
D. O. Samary
39
7
0
22 Dec 2022
Characterizing 4-string contact interaction using machine learning
Characterizing 4-string contact interaction using machine learning
Harold Erbin
Atakan Hilmi Fırat
35
15
0
16 Nov 2022
Phenomenological Model of Superconducting Optoelectronic Loop Neurons
Phenomenological Model of Superconducting Optoelectronic Loop Neurons
J. Shainline
Bryce Primavera
Saeed A. Khan
21
6
0
18 Oct 2022
On the Dynamics of Inference and Learning
On the Dynamics of Inference and Learning
D. Berman
J. Heckman
Marc S. Klinger
24
10
0
19 Apr 2022
Contrasting random and learned features in deep Bayesian linear
  regression
Contrasting random and learned features in deep Bayesian linear regression
Jacob A. Zavatone-Veth
William L. Tong
Cengiz Pehlevan
BDL
MLT
28
26
0
01 Mar 2022
Unified field theoretical approach to deep and recurrent neuronal
  networks
Unified field theoretical approach to deep and recurrent neuronal networks
Kai Segadlo
Bastian Epping
Alexander van Meegen
David Dahmen
Michael Krämer
M. Helias
AI4CE
BDL
37
20
0
10 Dec 2021
Representation Learning via Quantum Neural Tangent Kernels
Representation Learning via Quantum Neural Tangent Kernels
Junyu Liu
F. Tacchino
Jennifer R. Glick
Liang Jiang
Antonio Mezzacapo
24
60
0
08 Nov 2021
Nonperturbative renormalization for the neural network-QFT
  correspondence
Nonperturbative renormalization for the neural network-QFT correspondence
Harold Erbin
Vincent Lahoche
D. O. Samary
41
30
0
03 Aug 2021
Towards quantifying information flows: relative entropy in deep neural
  networks and the renormalization group
Towards quantifying information flows: relative entropy in deep neural networks and the renormalization group
J. Erdmenger
Kevin T. Grosvenor
R. Jefferson
54
17
0
14 Jul 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian
  Process Perspective
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
28
24
0
11 Jun 2021
Quantum field-theoretic machine learning
Quantum field-theoretic machine learning
Dimitrios Bachtis
Gert Aarts
B. Lucini
AI4CE
19
28
0
18 Feb 2021
1