ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.07007
  4. Cited By
Interpretable Representations in Explainable AI: From Theory to Practice

Interpretable Representations in Explainable AI: From Theory to Practice

16 August 2020
Kacper Sokol
Peter A. Flach
ArXivPDFHTML

Papers citing "Interpretable Representations in Explainable AI: From Theory to Practice"

4 / 4 papers shown
Title
What and How of Machine Learning Transparency: Building Bespoke
  Explainability Tools with Interoperable Algorithmic Components
What and How of Machine Learning Transparency: Building Bespoke Explainability Tools with Interoperable Algorithmic Components
Kacper Sokol
Alexander Hepburn
Raúl Santos-Rodríguez
Peter A. Flach
54
8
0
08 Sep 2022
FAT Forensics: A Python Toolbox for Implementing and Deploying Fairness,
  Accountability and Transparency Algorithms in Predictive Systems
FAT Forensics: A Python Toolbox for Implementing and Deploying Fairness, Accountability and Transparency Algorithms in Predictive Systems
Kacper Sokol
Alexander Hepburn
Rafael Poyiadzi
M. Clifford
Raúl Santos-Rodríguez
Peter A. Flach
45
29
0
08 Sep 2022
Explaining the Explainer: A First Theoretical Analysis of LIME
Explaining the Explainer: A First Theoretical Analysis of LIME
Damien Garreau
U. V. Luxburg
FAtt
43
175
0
10 Jan 2020
"How do I fool you?": Manipulating User Trust via Misleading Black Box
  Explanations
"How do I fool you?": Manipulating User Trust via Misleading Black Box Explanations
Himabindu Lakkaraju
Osbert Bastani
48
252
0
15 Nov 2019
1