Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.06180
Cited By
Distillation-Based Semi-Supervised Federated Learning for Communication-Efficient Collaborative Training with Non-IID Private Data
14 August 2020
Sohei Itahara
Takayuki Nishio
Yusuke Koda
M. Morikura
Koji Yamamoto
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Distillation-Based Semi-Supervised Federated Learning for Communication-Efficient Collaborative Training with Non-IID Private Data"
35 / 35 papers shown
Title
Soft-Label Caching and Sharpening for Communication-Efficient Federated Distillation
Kitsuya Azuma
Takayuki Nishio
Yuichi Kitagawa
Wakako Nakano
Takahito Tanimura
FedML
70
0
0
28 Apr 2025
Privacy-Preserving Federated Embedding Learning for Localized Retrieval-Augmented Generation
Qianren Mao
Qili Zhang
Hanwen Hao
Zhentao Han
Runhua Xu
...
Jing Chen
Yangqiu Song
Jin Dong
Jianxin Li
Philip S. Yu
71
1
0
27 Apr 2025
Intelligent Attacks and Defense Methods in Federated Learning-enabled Energy-Efficient Wireless Networks
Han Zhang
Hao Zhou
Medhat H. M. Elsayed
Majid Bavand
Raimundas Gaigalas
Yigit Ozcan
Melike Erol-Kantarci
AAML
72
0
0
25 Apr 2025
Moss: Proxy Model-based Full-Weight Aggregation in Federated Learning with Heterogeneous Models
Y. Cai
Ziqi Zhang
Ding Li
Yao Guo
Xiangqun Chen
55
0
0
13 Mar 2025
dFLMoE: Decentralized Federated Learning via Mixture of Experts for Medical Data Analysis
Luyuan Xie
Tianyu Luan
Wenyuan Cai
Guochen Yan
Zhe Chen
Nan Xi
Yuejian Fang
Qingni Shen
Zhonghai Wu
Junsong Yuan
FedML
67
0
0
13 Mar 2025
FedDr+: Stabilizing Dot-regression with Global Feature Distillation for Federated Learning
Seongyoon Kim
Minchan Jeong
Sungnyun Kim
Sungwoo Cho
Sumyeong Ahn
Se-Young Yun
FedML
47
0
0
04 Jun 2024
Federated Model Heterogeneous Matryoshka Representation Learning
Liping Yi
Han Yu
Chao Ren
Gang Wang
Xiaoguang Liu
Xiaoxiao Li
FedML
43
8
0
01 Jun 2024
FeDeRA:Efficient Fine-tuning of Language Models in Federated Learning Leveraging Weight Decomposition
Yuxuan Yan
Qianqian Yang
Shunpu Tang
Zhiguo Shi
38
13
0
29 Apr 2024
Multiple Access in the Era of Distributed Computing and Edge Intelligence
Nikos G. Evgenidis
Nikos A. Mitsiou
Vasiliki I. Koutsioumpa
Sotiris A. Tegos
P. Diamantoulakis
G. Karagiannidis
41
8
0
26 Feb 2024
Practical Insights into Knowledge Distillation for Pre-Trained Models
Norah Alballa
Marco Canini
48
2
0
22 Feb 2024
Distributed Personalized Empirical Risk Minimization
Yuyang Deng
Mohammad Mahdi Kamani
Pouria Mahdavinia
M. Mahdavi
31
4
0
26 Oct 2023
Λ
Λ
Λ
-Split: A Privacy-Preserving Split Computing Framework for Cloud-Powered Generative AI
Shoki Ohta
Takayuki Nishio
64
4
0
23 Oct 2023
Teacher-Student Architecture for Knowledge Distillation: A Survey
Chengming Hu
Xuan Li
Danyang Liu
Haolun Wu
Xi Chen
Ju Wang
Xue Liu
21
16
0
08 Aug 2023
A Survey of What to Share in Federated Learning: Perspectives on Model Utility, Privacy Leakage, and Communication Efficiency
Jiawei Shao
Zijian Li
Wenqiang Sun
Tailin Zhou
Yuchang Sun
Lumin Liu
Zehong Lin
Yuyi Mao
Jun Zhang
FedML
43
23
0
20 Jul 2023
FedMultimodal: A Benchmark For Multimodal Federated Learning
Tiantian Feng
Digbalay Bose
Tuo Zhang
Rajat Hebbar
Anil Ramakrishna
Rahul Gupta
Mi Zhang
Salman Avestimehr
Shrikanth Narayanan
32
48
0
15 Jun 2023
Homogenizing Non-IID datasets via In-Distribution Knowledge Distillation for Decentralized Learning
Deepak Ravikumar
Gobinda Saha
Sai Aparna Aketi
Kaushik Roy
18
1
0
09 Apr 2023
Knowledge Distillation in Federated Edge Learning: A Survey
Zhiyuan Wu
Sheng Sun
Yuwei Wang
Min Liu
Xue Jiang
Runhan Li
Bo Gao
FedML
27
4
0
14 Jan 2023
FedICT: Federated Multi-task Distillation for Multi-access Edge Computing
Zhiyuan Wu
Sheng Sun
Yuwei Wang
Min Liu
Quyang Pan
Xue Jiang
Bo Gao
35
31
0
01 Jan 2023
Decentralized Learning with Multi-Headed Distillation
A. Zhmoginov
Mark Sandler
Nolan Miller
Gus Kristiansen
Max Vladymyrov
FedML
37
4
0
28 Nov 2022
Scalable Collaborative Learning via Representation Sharing
Frédéric Berdoz
Abhishek Singh
Martin Jaggi
Ramesh Raskar
FedML
22
3
0
20 Nov 2022
Federated Learning for Medical Applications: A Taxonomy, Current Trends, Challenges, and Future Research Directions
A. Rauniyar
D. Hagos
Debesh Jha
J. E. Haakegaard
Ulas Bagci
D. Rawat
Vladimir Vlassov
OOD
43
90
0
05 Aug 2022
Towards Efficient Communications in Federated Learning: A Contemporary Survey
Zihao Zhao
Yuzhu Mao
Yang Liu
Linqi Song
Ouyang Ye
Xinlei Chen
Wenbo Ding
FedML
54
59
0
02 Aug 2022
Federated Distillation based Indoor Localization for IoT Networks
Yaya Etiabi
Marwa Chafii
El-Mehdi Amhoud
FedML
40
15
0
23 May 2022
Federated Learning from Only Unlabeled Data with Class-Conditional-Sharing Clients
Nan Lu
Zhao Wang
Xiaoxiao Li
Gang Niu
Qianming Dou
Masashi Sugiyama
FedML
27
39
0
07 Apr 2022
TinyMLOps: Operational Challenges for Widespread Edge AI Adoption
Sam Leroux
Pieter Simoens
Meelis Lootus
Kartik Thakore
Akshay Sharma
24
16
0
21 Mar 2022
Communication-Efficient Federated Distillation with Active Data Sampling
Lumin Liu
Jun Zhang
Shenghui Song
Khaled B. Letaief
FedML
21
25
0
14 Mar 2022
An Efficient Federated Distillation Learning System for Multi-task Time Series Classification
Huanlai Xing
Zhiwen Xiao
R. Qu
Zonghai Zhu
Bowen Zhao
FedML
35
108
0
30 Dec 2021
Efficient Federated Learning for AIoT Applications Using Knowledge Distillation
Tian Liu
Xian Wei
Jun Xia
Xin Fu
Ting Wang
Mingsong Chen
6
15
0
29 Nov 2021
Semi-Supervised Federated Learning with non-IID Data: Algorithm and System Design
Zhe Zhang
Shiyao Ma
Jiangtian Nie
Yi Wu
Qiang Yan
Xiaoke Xu
Dusit Niyato
FedML
13
16
0
26 Oct 2021
SSFL: Tackling Label Deficiency in Federated Learning via Personalized Self-Supervision
Chaoyang He
Zhengyu Yang
Erum Mushtaq
Sunwoo Lee
Mahdi Soltanolkotabi
A. Avestimehr
FedML
98
36
0
06 Oct 2021
Personalized Federated Learning for Heterogeneous Clients with Clustered Knowledge Transfer
Yae Jee Cho
Jianyu Wang
Tarun Chiruvolu
Gauri Joshi
FedML
35
30
0
16 Sep 2021
FedZKT: Zero-Shot Knowledge Transfer towards Resource-Constrained Federated Learning with Heterogeneous On-Device Models
Lan Zhang
Dapeng Oliver Wu
Xiaoyong Yuan
FedML
38
47
0
08 Sep 2021
Reward-Based 1-bit Compressed Federated Distillation on Blockchain
Leon Witt
Usama Zafar
KuoYeh Shen
Felix Sattler
Dan Li
Wojciech Samek
FedML
35
4
0
27 Jun 2021
Improving Semi-supervised Federated Learning by Reducing the Gradient Diversity of Models
Zhengming Zhang
Yaoqing Yang
Z. Yao
Yujun Yan
Joseph E. Gonzalez
Michael W. Mahoney
FedML
39
36
0
26 Aug 2020
Large scale distributed neural network training through online distillation
Rohan Anil
Gabriel Pereyra
Alexandre Passos
Róbert Ormándi
George E. Dahl
Geoffrey E. Hinton
FedML
278
404
0
09 Apr 2018
1