ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.05984
  4. Cited By
Meta Learning MPC using Finite-Dimensional Gaussian Process
  Approximations

Meta Learning MPC using Finite-Dimensional Gaussian Process Approximations

13 August 2020
Elena Arcari
Andrea Carron
Melanie Zeilinger
ArXivPDFHTML

Papers citing "Meta Learning MPC using Finite-Dimensional Gaussian Process Approximations"

14 / 14 papers shown
Title
On-Line Learning for Planning and Control of Underactuated Robots with Uncertain Dynamics
On-Line Learning for Planning and Control of Underactuated Robots with Uncertain Dynamics
Giulio Turrisi
Marco Capotondi
C. Gaz
Valerio Modugno
Giuseppe Oriolo
Alessandro De Luca
140
8
0
30 Jan 2025
VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning
VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning
L. Zintgraf
K. Shiarlis
Maximilian Igl
Sebastian Schulze
Y. Gal
Katja Hofmann
Shimon Whiteson
OffRL
55
277
0
18 Oct 2019
Non-linear Multitask Learning with Deep Gaussian Processes
Non-linear Multitask Learning with Deep Gaussian Processes
Ayman Boustati
Theodoros Damoulas
R. Savage
BDL
35
6
0
29 May 2019
Learn Fast, Forget Slow: Safe Predictive Learning Control for Systems
  with Unknown and Changing Dynamics Performing Repetitive Tasks
Learn Fast, Forget Slow: Safe Predictive Learning Control for Systems with Unknown and Changing Dynamics Performing Repetitive Tasks
Christopher D. McKinnon
Angela P. Schoellig
23
41
0
15 Oct 2018
Meta-Learning Priors for Efficient Online Bayesian Regression
Meta-Learning Priors for Efficient Online Bayesian Regression
James Harrison
Apoorva Sharma
Marco Pavone
BDL
73
102
0
24 Jul 2018
Learning to Adapt in Dynamic, Real-World Environments Through
  Meta-Reinforcement Learning
Learning to Adapt in Dynamic, Real-World Environments Through Meta-Reinforcement Learning
Anusha Nagabandi
I. Clavera
Simin Liu
R. Fearing
Pieter Abbeel
Sergey Levine
Chelsea Finn
117
548
0
30 Mar 2018
Meta Reinforcement Learning with Latent Variable Gaussian Processes
Meta Reinforcement Learning with Latent Variable Gaussian Processes
Steindór Sæmundsson
Katja Hofmann
M. Deisenroth
BDL
OffRL
AI4CE
74
141
0
20 Mar 2018
Recasting Gradient-Based Meta-Learning as Hierarchical Bayes
Recasting Gradient-Based Meta-Learning as Hierarchical Bayes
Erin Grant
Chelsea Finn
Sergey Levine
Trevor Darrell
Thomas Griffiths
BDL
83
509
0
26 Jan 2018
Continuous Adaptation via Meta-Learning in Nonstationary and Competitive
  Environments
Continuous Adaptation via Meta-Learning in Nonstationary and Competitive Environments
Maruan Al-Shedivat
Trapit Bansal
Yuri Burda
Ilya Sutskever
Igor Mordatch
Pieter Abbeel
CLL
66
354
0
10 Oct 2017
Data-Efficient Reinforcement Learning with Probabilistic Model
  Predictive Control
Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
Sanket Kamthe
M. Deisenroth
123
217
0
20 Jun 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
823
11,899
0
09 Mar 2017
Learning to reinforcement learn
Learning to reinforcement learn
Jane X. Wang
Z. Kurth-Nelson
Dhruva Tirumala
Hubert Soyer
Joel Z Leibo
Rémi Munos
Charles Blundell
D. Kumaran
M. Botvinick
OffRL
97
979
0
17 Nov 2016
Gaussian Processes for Data-Efficient Learning in Robotics and Control
Gaussian Processes for Data-Efficient Learning in Robotics and Control
M. Deisenroth
Dieter Fox
C. Rasmussen
109
693
0
10 Feb 2015
Hidden Parameter Markov Decision Processes: A Semiparametric Regression
  Approach for Discovering Latent Task Parametrizations
Hidden Parameter Markov Decision Processes: A Semiparametric Regression Approach for Discovering Latent Task Parametrizations
Finale Doshi-Velez
George Konidaris
138
130
0
15 Aug 2013
1