ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.05912
  4. Cited By
A statistical theory of cold posteriors in deep neural networks

A statistical theory of cold posteriors in deep neural networks

13 August 2020
Laurence Aitchison
    UQCV
    BDL
ArXivPDFHTML

Papers citing "A statistical theory of cold posteriors in deep neural networks"

11 / 11 papers shown
Title
Scalable Bayesian Learning with posteriors
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDL
UQCV
62
1
0
31 May 2024
Function-Space Regularization for Deep Bayesian Classification
Function-Space Regularization for Deep Bayesian Classification
J. Lin
Joe Watson
Pascal Klink
Jan Peters
UQCV
BDL
38
1
0
12 Jul 2023
Non-reversible Parallel Tempering for Deep Posterior Approximation
Non-reversible Parallel Tempering for Deep Posterior Approximation
Wei Deng
Qian Zhang
Qi Feng
F. Liang
Guang Lin
20
4
0
20 Nov 2022
Cold Posteriors through PAC-Bayes
Cold Posteriors through PAC-Bayes
Konstantinos Pitas
Julyan Arbel
23
5
0
22 Jun 2022
How Tempering Fixes Data Augmentation in Bayesian Neural Networks
How Tempering Fixes Data Augmentation in Bayesian Neural Networks
Gregor Bachmann
Lorenzo Noci
Thomas Hofmann
BDL
AAML
80
8
0
27 May 2022
Interacting Contour Stochastic Gradient Langevin Dynamics
Interacting Contour Stochastic Gradient Langevin Dynamics
Wei Deng
Siqi Liang
Botao Hao
Guang Lin
F. Liang
BDL
26
10
0
20 Feb 2022
Bayesian neural network unit priors and generalized Weibull-tail
  property
Bayesian neural network unit priors and generalized Weibull-tail property
M. Vladimirova
Julyan Arbel
Stéphane Girard
BDL
54
9
0
06 Oct 2021
Deep Classifiers with Label Noise Modeling and Distance Awareness
Deep Classifiers with Label Noise Modeling and Distance Awareness
Vincent Fortuin
Mark Collier
F. Wenzel
J. Allingham
J. Liu
Dustin Tran
Balaji Lakshminarayanan
Jesse Berent
Rodolphe Jenatton
E. Kokiopoulou
UQCV
34
11
0
06 Oct 2021
Disentangling the Roles of Curation, Data-Augmentation and the Prior in
  the Cold Posterior Effect
Disentangling the Roles of Curation, Data-Augmentation and the Prior in the Cold Posterior Effect
Lorenzo Noci
Kevin Roth
Gregor Bachmann
Sebastian Nowozin
Thomas Hofmann
CML
30
23
0
11 Jun 2021
Data augmentation in Bayesian neural networks and the cold posterior
  effect
Data augmentation in Bayesian neural networks and the cold posterior effect
Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
BDL
26
37
0
10 Jun 2021
Global inducing point variational posteriors for Bayesian neural
  networks and deep Gaussian processes
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
26
60
0
17 May 2020
1