Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.05387
Cited By
Distributed Gradient Flow: Nonsmoothness, Nonconvexity, and Saddle Point Evasion
12 August 2020
Brian Swenson
Ryan W. Murray
H. Vincent Poor
S. Kar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Distributed Gradient Flow: Nonsmoothness, Nonconvexity, and Saddle Point Evasion"
22 / 22 papers shown
Title
Peer-to-Peer Learning Dynamics of Wide Neural Networks
Shreyas Chaudhari
Srinivasa Pranav
Emile Anand
José M. F. Moura
75
3
0
23 Sep 2024
On Distributed Stochastic Gradient Algorithms for Global Optimization
Brian Swenson
Anirudh Sridhar
H. Vincent Poor
39
8
0
21 Oct 2019
Distributed Gradient Descent: Nonconvergence to Saddle Points and the Stable-Manifold Theorem
Brian Swenson
Ryan W. Murray
H. Vincent Poor
S. Kar
86
14
0
07 Aug 2019
Distributed Learning in Non-Convex Environments -- Part II: Polynomial Escape from Saddle-Points
Stefan Vlaski
Ali H. Sayed
63
53
0
03 Jul 2019
Distributed Learning in Non-Convex Environments -- Part I: Agreement at a Linear Rate
Stefan Vlaski
Ali H. Sayed
66
68
0
03 Jul 2019
Annealing for Distributed Global Optimization
Brian Swenson
S. Kar
H. Vincent Poor
J. M. F. Moura
70
30
0
18 Mar 2019
On Nonconvex Optimization for Machine Learning: Gradients, Stochasticity, and Saddle Points
Chi Jin
Praneeth Netrapalli
Rong Ge
Sham Kakade
Michael I. Jordan
79
61
0
13 Feb 2019
Second-order Guarantees of Distributed Gradient Algorithms
Amir Daneshmand
G. Scutari
Vyacheslav Kungurtsev
74
59
0
23 Sep 2018
Distributed Nonconvex Constrained Optimization over Time-Varying Digraphs
G. Scutari
Ying Sun
87
174
0
04 Sep 2018
Stochastic subgradient method converges on tame functions
Damek Davis
Dmitriy Drusvyatskiy
Sham Kakade
Jason D. Lee
59
251
0
20 Apr 2018
Distributed Non-Convex First-Order Optimization and Information Processing: Lower Complexity Bounds and Rate Optimal Algorithms
Haoran Sun
Mingyi Hong
42
52
0
08 Apr 2018
Non-convex Optimization for Machine Learning
Prateek Jain
Purushottam Kar
158
486
0
21 Dec 2017
Gradient Descent Can Take Exponential Time to Escape Saddle Points
S. Du
Chi Jin
Jason D. Lee
Michael I. Jordan
Barnabás Póczós
Aarti Singh
54
244
0
29 May 2017
Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent
Xiangru Lian
Ce Zhang
Huan Zhang
Cho-Jui Hsieh
Wei Zhang
Ji Liu
50
1,228
0
25 May 2017
How to Escape Saddle Points Efficiently
Chi Jin
Rong Ge
Praneeth Netrapalli
Sham Kakade
Michael I. Jordan
ODL
224
836
0
02 Mar 2017
Decentralized Frank-Wolfe Algorithm for Convex and Non-convex Problems
Hoi-To Wai
Jean Lafond
Anna Scaglione
Eric Moulines
95
90
0
05 Dec 2016
Distributed Nonconvex Multiagent Optimization Over Time-Varying Networks
Ying Sun
G. Scutari
Daniel P. Palomar
93
89
0
01 Jul 2016
NEXT: In-Network Nonconvex Optimization
P. Lorenzo
G. Scutari
103
508
0
01 Feb 2016
Distributed optimization over time-varying directed graphs
A. Nedić
Alexander Olshevsky
61
999
0
10 Mar 2013
Diffusion Adaptation Strategies for Distributed Optimization and Learning over Networks
Jianshu Chen
Ali H. Sayed
99
654
0
31 Oct 2011
Convergence of a Multi-Agent Projected Stochastic Gradient Algorithm for Non-Convex Optimization
Pascal Bianchi
J. Jakubowicz
113
256
0
13 Jul 2011
Gossip Algorithms for Distributed Signal Processing
A. Dimakis
S. Kar
José M. F. Moura
Michael G. Rabbat
Anna Scaglione
143
857
0
27 Mar 2010
1