ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.05024
  4. Cited By
Learned Proximal Networks for Quantitative Susceptibility Mapping

Learned Proximal Networks for Quantitative Susceptibility Mapping

11 August 2020
Kuo-Wei Lai
M. Aggarwal
P. Zijl
Xu Li
Jeremias Sulam
ArXiv (abs)PDFHTML

Papers citing "Learned Proximal Networks for Quantitative Susceptibility Mapping"

9 / 9 papers shown
Title
IR2QSM: Quantitative Susceptibility Mapping via Deep Neural Networks
  with Iterative Reverse Concatenations and Recurrent Modules
IR2QSM: Quantitative Susceptibility Mapping via Deep Neural Networks with Iterative Reverse Concatenations and Recurrent Modules
Min Li
Chen Chen
Z. Xiong
Ying Liu
Pengfei Rong
Shanshan Shan
Feng Liu
Hongfu Sun
Yang Gao
60
0
0
18 Jun 2024
What's in a Prior? Learned Proximal Networks for Inverse Problems
What's in a Prior? Learned Proximal Networks for Inverse Problems
Zhenghan Fang
Sam Buchanan
Jeremias Sulam
86
12
0
22 Oct 2023
Quantitative Susceptibility Mapping through Model-based Deep Image Prior
  (MoDIP)
Quantitative Susceptibility Mapping through Model-based Deep Image Prior (MoDIP)
Z. Xiong
Yang Gao
Yin Liu
Amir Fazlollahi
P. Nestor
Feng Liu
Hongfu Sun
MedIm
30
11
0
18 Aug 2023
Physics-based network fine-tuning for robust quantitative susceptibility
  mapping from high-pass filtered phase
Physics-based network fine-tuning for robust quantitative susceptibility mapping from high-pass filtered phase
Jinwei Zhang
A. Dimov
Chao Li
Hang Zhang
Thanh D. Nguyen
P. Spincemaille
Yi Wang
52
0
0
05 May 2023
Affine Transformation Edited and Refined Deep Neural Network for
  Quantitative Susceptibility Mapping
Affine Transformation Edited and Refined Deep Neural Network for Quantitative Susceptibility Mapping
Z. Xiong
Yang Gao
Feng Liu
Hongfu Sun
MedIm
44
11
0
25 Nov 2022
Interpretable Modeling and Reduction of Unknown Errors in Mechanistic
  Operators
Interpretable Modeling and Reduction of Unknown Errors in Mechanistic Operators
Maryam Toloubidokhti
Nilesh Kumar
Zhiyuan Li
P. Gyawali
B. Zenger
W. Good
Rob S. MacLeod
Linwei Wang
MedImAI4CE
27
1
0
02 Nov 2022
DeepSTI: Towards Tensor Reconstruction using Fewer Orientations in
  Susceptibility Tensor Imaging
DeepSTI: Towards Tensor Reconstruction using Fewer Orientations in Susceptibility Tensor Imaging
Zhenghan Fang
Kuo-Wei Lai
P. Zijl
Xu Li
Jeremias Sulam
127
5
0
09 Sep 2022
NeXtQSM -- A complete deep learning pipeline for data-consistent
  quantitative susceptibility mapping trained with hybrid data
NeXtQSM -- A complete deep learning pipeline for data-consistent quantitative susceptibility mapping trained with hybrid data
Francesco Cognolato
Kieran O’Brien
Jin Jin
S. Robinson
F. Laun
M. Barth
S. Bollmann
40
7
0
16 Jul 2021
MoDL-QSM: Model-based Deep Learning for Quantitative Susceptibility
  Mapping
MoDL-QSM: Model-based Deep Learning for Quantitative Susceptibility Mapping
Rui-jun Feng
Jiayi Zhao
He Wang
Baofeng Yang
Jie Feng
...
Ming Zhang
Chunlei Liu
Yuyao Zhang
Zhuang Jie
Hongjiang Wei
41
34
0
21 Jan 2021
1