Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.05000
Cited By
Degree-Quant: Quantization-Aware Training for Graph Neural Networks
11 August 2020
Shyam A. Tailor
Javier Fernandez-Marques
Nicholas D. Lane
GNN
MQ
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Degree-Quant: Quantization-Aware Training for Graph Neural Networks"
36 / 36 papers shown
Title
Fast RoPE Attention: Combining the Polynomial Method and Fast Fourier Transform
Josh Alman
Zhao Song
12
0
0
17 May 2025
Diffusion Model Quantization: A Review
Qian Zeng
Chenggong Hu
Mingli Song
Jie Song
MQ
45
0
0
08 May 2025
Inference-friendly Graph Compression for Graph Neural Networks
Yangxin Fan
Haolai Che
Yinghui Wu
GNN
62
0
0
17 Apr 2025
FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUs
Yuanchang Zhou
Siyu Hu
Chen Wang
Lin-Wang Wang
Guangming Tan
Weile Jia
AI4CE
GNN
54
0
0
30 Dec 2024
On the Impact of White-box Deployment Strategies for Edge AI on Latency and Model Performance
Jaskirat Singh
Bram Adams
Ahmed E. Hassan
VLM
43
0
0
01 Nov 2024
On the Impact of Black-box Deployment Strategies for Edge AI on Latency and Model Performance
Jaskirat Singh
Emad Fallahzadeh
Bram Adams
Ahmed E. Hassan
MQ
40
3
0
25 Mar 2024
Better Schedules for Low Precision Training of Deep Neural Networks
Cameron R. Wolfe
Anastasios Kyrillidis
47
1
0
04 Mar 2024
Teaching MLP More Graph Information: A Three-stage Multitask Knowledge Distillation Framework
Junxian Li
Bin Shi
Erfei Cui
Hua Wei
Qinghua Zheng
49
0
0
02 Mar 2024
Faster and Lighter LLMs: A Survey on Current Challenges and Way Forward
Arnav Chavan
Raghav Magazine
Shubham Kushwaha
M. Debbah
Deepak Gupta
16
18
0
02 Feb 2024
Low-bit Quantization for Deep Graph Neural Networks with Smoothness-aware Message Propagation
Shuang Wang
B. Eravcı
Rustam Guliyev
Hakan Ferhatosmanoglu
GNN
MQ
27
6
0
29 Aug 2023
Frameless Graph Knowledge Distillation
Dai Shi
Zhiqi Shao
Yi Guo
Junbin Gao
39
4
0
13 Jul 2023
The Evolution of Distributed Systems for Graph Neural Networks and their Origin in Graph Processing and Deep Learning: A Survey
Jana Vatter
R. Mayer
Hans-Arno Jacobsen
GNN
AI4TS
AI4CE
48
23
0
23 May 2023
Patch-wise Mixed-Precision Quantization of Vision Transformer
Junrui Xiao
Zhikai Li
Lianwei Yang
Qingyi Gu
MQ
32
12
0
11 May 2023
P4L: Privacy Preserving Peer-to-Peer Learning for Infrastructureless Setups
Ioannis Arapakis
P. Papadopoulos
Kleomenis Katevas
Diego Perino
24
7
0
26 Feb 2023
ACQ: Improving Generative Data-free Quantization Via Attention Correction
Jixing Li
Xiaozhou Guo
Benzhe Dai
Guoliang Gong
Min Jin
Gang Chen
Wenyu Mao
Huaxiang Lu
MQ
30
4
0
18 Jan 2023
Distributed Graph Neural Network Training: A Survey
Yingxia Shao
Hongzheng Li
Xizhi Gu
Hongbo Yin
Yawen Li
Xupeng Miao
Wentao Zhang
Bin Cui
Lei Chen
GNN
AI4CE
11
56
0
01 Nov 2022
SA-MLP: Distilling Graph Knowledge from GNNs into Structure-Aware MLP
Jie Chen
Shouzhen Chen
Mingyuan Bai
Junbin Gao
Junping Zhang
Jian Pu
40
10
0
18 Oct 2022
Linkless Link Prediction via Relational Distillation
Zhichun Guo
William Shiao
Shichang Zhang
Yozen Liu
Nitesh V. Chawla
Neil Shah
Tong Zhao
24
41
0
11 Oct 2022
Triple Sparsification of Graph Convolutional Networks without Sacrificing the Accuracy
Md. Khaledur Rahman
A. Azad
GNN
45
7
0
06 Aug 2022
BiFeat: Supercharge GNN Training via Graph Feature Quantization
Yuxin Ma
Ping Gong
Jun Yi
Z. Yao
Cheng-rong Li
Yuxiong He
Feng Yan
GNN
21
6
0
29 Jul 2022
Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural Networks
Chuang Liu
Xueqi Ma
Yinbing Zhan
Liang Ding
Dapeng Tao
Bo Du
Wenbin Hu
Danilo Mandic
42
28
0
18 Jul 2022
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
He Zhang
Bang Wu
Xingliang Yuan
Shirui Pan
Hanghang Tong
Jian Pei
45
104
0
16 May 2022
Survey on Graph Neural Network Acceleration: An Algorithmic Perspective
Xin Liu
Yurui Lai
Lei Deng
Guoqi Li
Xiaochun Ye
Xiaochun Ye
Shirui Pan
Yuan Xie
GNN
16
42
0
10 Feb 2022
GCoD: Graph Convolutional Network Acceleration via Dedicated Algorithm and Accelerator Co-Design
Sung Une Lee
Boming Xia
Yongan Zhang
Ang Li
Yingyan Lin
GNN
55
47
0
22 Dec 2021
QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core
Yuke Wang
Boyuan Feng
Yufei Ding
GNN
33
41
0
18 Nov 2021
VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using Vector Quantization
Mucong Ding
Kezhi Kong
Jingling Li
Chen Zhu
John P. Dickerson
Furong Huang
Tom Goldstein
GNN
MQ
33
47
0
27 Oct 2021
Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation
Shichang Zhang
Yozen Liu
Yizhou Sun
Neil Shah
33
173
0
17 Oct 2021
Haar Wavelet Feature Compression for Quantized Graph Convolutional Networks
Moshe Eliasof
Ben Bodner
Eran Treister
GNN
35
7
0
10 Oct 2021
G-CoS: GNN-Accelerator Co-Search Towards Both Better Accuracy and Efficiency
Yongan Zhang
Haoran You
Yonggan Fu
Tong Geng
Ang Li
Yingyan Lin
GNN
21
28
0
18 Sep 2021
Federated Graph Learning -- A Position Paper
Hu Zhang
T. Shen
Fei Wu
Mingyang Yin
Hongxia Yang
Chao Wu
FedML
16
49
0
24 May 2021
Early-Bird GCNs: Graph-Network Co-Optimization Towards More Efficient GCN Training and Inference via Drawing Early-Bird Lottery Tickets
Haoran You
Zhihan Lu
Zijian Zhou
Y. Fu
Yingyan Lin
GNN
38
30
0
01 Mar 2021
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
191
1,027
0
06 Mar 2020
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
189
917
0
02 Mar 2020
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
224
1,340
0
12 Feb 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
231
1,780
0
02 Mar 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
254
1,811
0
25 Nov 2016
1