ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.04370
  4. Cited By
Predicting Risk of Developing Diabetic Retinopathy using Deep Learning

Predicting Risk of Developing Diabetic Retinopathy using Deep Learning

10 August 2020
Ashish Bora
Siva Balasubramanian
Boris Babenko
S. Virmani
Subhashini Venugopalan
A. Mitani
Guilherme de Oliveira Marinho
Jorge A Cuadros
Paisan Ruamviboonsuk
G. Corrado
L. Peng
D. Webster
A. Varadarajan
N. Hammel
Yun-Hui Liu
Pinal Bavishi
ArXivPDFHTML

Papers citing "Predicting Risk of Developing Diabetic Retinopathy using Deep Learning"

9 / 9 papers shown
Title
Enhancing Diabetic Retinopathy Detection with CNN-Based Models: A Comparative Study of UNET and Stacked UNET Architectures
Enhancing Diabetic Retinopathy Detection with CNN-Based Models: A Comparative Study of UNET and Stacked UNET Architectures
Ameya Uppina
S Navaneetha Krishnan
Talluri Krishna Sai Teja
Nikhil N Iyer
Joe Dhanith P R
32
0
0
02 Nov 2024
Attribution in Scale and Space
Attribution in Scale and Space
Shawn Xu
Subhashini Venugopalan
Mukund Sundararajan
FAtt
BDL
37
71
0
03 Apr 2020
From Machine to Machine: An OCT-trained Deep Learning Algorithm for
  Objective Quantification of Glaucomatous Damage in Fundus Photographs
From Machine to Machine: An OCT-trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs
Felipe A. Medeiros
A. Jammal
A. Thompson
MedIm
26
194
0
20 Oct 2018
Predicting optical coherence tomography-derived diabetic macular edema
  grades from fundus photographs using deep learning
Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning
A. Varadarajan
Pinal Bavishi
Paisan Ruamviboonsuk
Peranut Chotcomwongse
Subhashini Venugopalan
...
J. Ledsam
P. Keane
G. Corrado
L. Peng
D. Webster
MedIm
29
108
0
18 Oct 2018
Grader variability and the importance of reference standards for
  evaluating machine learning models for diabetic retinopathy
Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy
Jonathan Krause
Varun Gulshan
E. Rahimy
Peter Karth
Kasumi Widner
G. Corrado
L. Peng
D. Webster
119
441
0
04 Oct 2017
Predicting Cardiovascular Risk Factors from Retinal Fundus Photographs
  using Deep Learning
Predicting Cardiovascular Risk Factors from Retinal Fundus Photographs using Deep Learning
Ryan Poplin
A. Varadarajan
Katy Blumer
Yun-Hui Liu
M. McConnell
G. Corrado
L. Peng
D. Webster
MedIm
53
1,331
0
31 Aug 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
149
5,920
0
04 Mar 2017
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
594
27,231
0
02 Dec 2015
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
200
4,653
0
21 Dec 2014
1