ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.03996
23
4

2nd Place Scheme on Action Recognition Track of ECCV 2020 VIPriors Challenges: An Efficient Optical Flow Stream Guided Framework

10 August 2020
Haoyu Chen
Zitong Yu
Xin Liu
Wei Peng
Yoon Lee
Guoying Zhao
    3DPC
ArXivPDFHTML
Abstract

To address the problem of training on small datasets for action recognition tasks, most prior works are either based on a large number of training samples or require pre-trained models transferred from other large datasets to tackle overfitting problems. However, it limits the research within organizations that have strong computational abilities. In this work, we try to propose a data-efficient framework that can train the model from scratch on small datasets while achieving promising results. Specifically, by introducing a 3D central difference convolution operation, we proposed a novel C3D neural network-based two-stream (Rank Pooling RGB and Optical Flow) framework for the task. The method is validated on the action recognition track of the ECCV 2020 VIPriors challenges and got the 2nd place (88.31%). It is proved that our method can achieve a promising result even without a pre-trained model on large scale datasets. The code will be released soon.

View on arXiv
Comments on this paper