Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.03312
Cited By
Complete parameter inference for GW150914 using deep learning
7 August 2020
Stephen R. Green
J. Gair
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Complete parameter inference for GW150914 using deep learning"
9 / 9 papers shown
Title
Comparative Study of Coupling and Autoregressive Flows through Robust Statistical Tests
A. Coccaro
Marco Letizia
H. Reyes-González
Riccardo Torre
OOD
48
5
0
23 Feb 2023
Adapting to noise distribution shifts in flow-based gravitational-wave inference
J. Wildberger
Maximilian Dax
Stephen R. Green
J. Gair
M. Purrer
Jakob H. Macke
A. Buonanno
Bernhard Schölkopf
AI4CE
34
9
0
16 Nov 2022
Investigating the Impact of Model Misspecification in Neural Simulation-based Inference
Patrick W Cannon
Daniel Ward
Sebastian M. Schmon
35
36
0
05 Sep 2022
Inference-optimized AI and high performance computing for gravitational wave detection at scale
Pranshu Chaturvedi
Asad Khan
Minyang Tian
Eliu A. Huerta
Huihuo Zheng
25
29
0
26 Jan 2022
Group equivariant neural posterior estimation
Maximilian Dax
Stephen R. Green
J. Gair
Michael Deistler
Bernhard Schölkopf
Jakob H. Macke
BDL
36
31
0
25 Nov 2021
Real-time gravitational-wave science with neural posterior estimation
Maximilian Dax
Stephen R. Green
J. Gair
Jakob H. Macke
A. Buonanno
Bernhard Schölkopf
34
133
0
23 Jun 2021
A deep generative model for probabilistic energy forecasting in power systems: normalizing flows
Jonathan Dumas
Antoine Wehenkel
Bertrand Cornélusse
Antonio Sutera
AI4TS
32
82
0
17 Jun 2021
Advances in Machine and Deep Learning for Modeling and Real-time Detection of Multi-Messenger Sources
Eliu A. Huerta
Zhizhen Zhao
42
22
0
13 May 2021
Classifying the Equation of State from Rotating Core Collapse Gravitational Waves with Deep Learning
M. Edwards
21
13
0
15 Sep 2020
1