ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.01883
  4. Cited By
When is invariance useful in an Out-of-Distribution Generalization
  problem ?

When is invariance useful in an Out-of-Distribution Generalization problem ?

4 August 2020
Masanori Koyama
Shoichiro Yamaguchi
    OOD
ArXivPDFHTML

Papers citing "When is invariance useful in an Out-of-Distribution Generalization problem ?"

15 / 15 papers shown
Title
Heterogeneous Data Game: Characterizing the Model Competition Across Multiple Data Sources
Heterogeneous Data Game: Characterizing the Model Competition Across Multiple Data Sources
Renzhe Xu
Kun Wang
Bo Li
33
0
0
12 May 2025
Federated Adapter on Foundation Models: An Out-Of-Distribution Approach
Federated Adapter on Foundation Models: An Out-Of-Distribution Approach
Yiyuan Yang
Guodong Long
Dinesh Manocha
Qinghua Lu
Shanshan Ye
Jing Jiang
OODD
174
1
0
02 May 2025
Utilizing Graph Generation for Enhanced Domain Adaptive Object Detection
Utilizing Graph Generation for Enhanced Domain Adaptive Object Detection
Mu Wang
47
0
0
23 Apr 2024
Domain Generalization in Computational Pathology: Survey and Guidelines
Domain Generalization in Computational Pathology: Survey and Guidelines
Mostafa Jahanifar
M. Raza
Kesi Xu
T. Vuong
R. Jewsbury
...
Neda Zamanitajeddin
Jin Tae Kwak
S. Raza
F. Minhas
Nasir M. Rajpoot
OOD
28
17
0
30 Oct 2023
Causality-oriented robustness: exploiting general noise interventions
Causality-oriented robustness: exploiting general noise interventions
Xinwei Shen
Peter Buhlmann
Armeen Taeb
OOD
65
7
0
18 Jul 2023
An Empirical Study of Pre-trained Model Selection for Out-of-Distribution Generalization and Calibration
An Empirical Study of Pre-trained Model Selection for Out-of-Distribution Generalization and Calibration
Hiroki Naganuma
Ryuichiro Hataya
Kotaro Yoshida
Ioannis Mitliagkas
OODD
92
1
0
17 Jul 2023
A step towards the applicability of algorithms based on invariant causal
  learning on observational data
A step towards the applicability of algorithms based on invariant causal learning on observational data
Borja Guerrero Santillan
CML
OOD
11
1
0
05 Apr 2023
Evaluating Robustness and Uncertainty of Graph Models Under Structural
  Distributional Shifts
Evaluating Robustness and Uncertainty of Graph Models Under Structural Distributional Shifts
Gleb Bazhenov
Denis Kuznedelev
A. Malinin
Artem Babenko
Liudmila Prokhorenkova
OOD
19
3
0
27 Feb 2023
On the Connection between Invariant Learning and Adversarial Training
  for Out-of-Distribution Generalization
On the Connection between Invariant Learning and Adversarial Training for Out-of-Distribution Generalization
Shiji Xin
Yifei Wang
Jingtong Su
Yisen Wang
OOD
21
7
0
18 Dec 2022
Invariance Learning based on Label Hierarchy
Invariance Learning based on Label Hierarchy
S. Toyota
Kenji Fukumizu
OOD
19
1
0
29 Mar 2022
Quantifying and Improving Transferability in Domain Generalization
Quantifying and Improving Transferability in Domain Generalization
Guojun Zhang
Han Zhao
Yaoliang Yu
Pascal Poupart
40
37
0
07 Jun 2021
Does Invariant Risk Minimization Capture Invariance?
Does Invariant Risk Minimization Capture Invariance?
Pritish Kamath
Akilesh Tangella
Danica J. Sutherland
Nathan Srebro
OOD
196
125
0
04 Jan 2021
Invariant Rationalization
Invariant Rationalization
Shiyu Chang
Yang Zhang
Mo Yu
Tommi Jaakkola
179
201
0
22 Mar 2020
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
323
4,212
0
23 Aug 2019
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
338
11,684
0
09 Mar 2017
1