ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.01513
57
36
v1v2v3v4 (latest)

A Learning-from-Observation Framework: One-Shot Robot Teaching for Grasp-Manipulation-Release Household Operations

4 August 2020
Naoki Wake
Riku Arakawa
Iori Yanokura
Takuya Kiyokawa
Kazuhiro Sasabuchi
Jun Takamatsu
Katsushi Ikeuchi
ArXiv (abs)PDFHTML
Abstract

A household robot is expected to perform various manipulative operations with an understanding of the purpose of the task. To this end, a desirable robotic application should provide an on-site robot teaching framework for non-experts. Here we propose a Learning-from-Observation (LfO) framework for grasp-manipulation-release class household operations (GMR-operations). The framework maps human demonstrations to predefined task models through one-shot teaching. Each task model contains both high-level knowledge regarding the geometric constraints and low-level knowledge related to human postures. The key idea is to design a task model that 1) covers various GMR-operations and 2) includes human postures to achieve tasks. We verify the applicability of our framework by testing an operational LfO system with a real robot. In addition, we quantify the coverage of the task model by analyzing online videos of household operations. In the context of one-shot robot teaching, the contribution of this study is a framework that 1) covers various GMR-operations and 2) mimics human postures during the operations.

View on arXiv
Comments on this paper