ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.01468
  4. Cited By
On Feature Relevance Uncertainty: A Monte Carlo Dropout Sampling
  Approach

On Feature Relevance Uncertainty: A Monte Carlo Dropout Sampling Approach

4 August 2020
Kai Fabi
Jonas Schneider
    BDL
ArXivPDFHTML

Papers citing "On Feature Relevance Uncertainty: A Monte Carlo Dropout Sampling Approach"

4 / 4 papers shown
Title
Explainable Artificial Intelligence: Understanding, Visualizing and
  Interpreting Deep Learning Models
Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models
Wojciech Samek
Thomas Wiegand
K. Müller
XAI
VLM
68
1,189
0
28 Aug 2017
Learning Important Features Through Propagating Activation Differences
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
192
3,869
0
10 Apr 2017
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
587
15,874
0
12 Nov 2013
How to Explain Individual Classification Decisions
How to Explain Individual Classification Decisions
D. Baehrens
T. Schroeter
Stefan Harmeling
M. Kawanabe
K. Hansen
K. Müller
FAtt
126
1,103
0
06 Dec 2009
1