ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.01352
83
27
v1v2v3 (latest)

PDE-Driven Spatiotemporal Disentanglement

4 August 2020
Jérémie Donà
Jean-Yves Franceschi
Sylvain Lamprier
Patrick Gallinari
    OODDRL
ArXiv (abs)PDFHTML
Abstract

A recent line of work addresses the problem of predicting high-dimensional spatiotemporal phenomena by leveraging specific tools from the differential equations theory. Following this direction, we propose in this article a novel and general paradigm for this task based on a resolution method for partial differential equations: the separation of variables. This inspiration allows to introduce a dynamical interpretation of spatiotemporal disentanglement. It induces a simple and principled model based on learning disentangled spatial and temporal representations of a phenomenon to accurately predict future observations. We experimentally demonstrate the performance and broad applicability of our method against prior state-of-the-art models on physical and synthetic video datasets.

View on arXiv
Comments on this paper