ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.00807
  4. Cited By
Adding Seemingly Uninformative Labels Helps in Low Data Regimes

Adding Seemingly Uninformative Labels Helps in Low Data Regimes

20 July 2020
Christos Matsoukas
Albert Bou I Hernandez
Yue Liu
Karin Dembrower
G. Miranda
Emir Konuk
Johan Fredin Haslum
Athanasios Zouzos
Peter Lindholm
Fredrik Strand
Kevin Smith
ArXivPDFHTML

Papers citing "Adding Seemingly Uninformative Labels Helps in Low Data Regimes"

3 / 3 papers shown
Title
MIRAM: Masked Image Reconstruction Across Multiple Scales for Breast Lesion Risk Prediction
MIRAM: Masked Image Reconstruction Across Multiple Scales for Breast Lesion Risk Prediction
H. Q. Vo
Pengyu Yuan
Zheng Yin
Kelvin K. Wong
Chika F. Ezeana
S. Ly
Stephen T. C. Wong
H. Nguyen
46
0
0
10 Mar 2025
Pretrained ViTs Yield Versatile Representations For Medical Images
Pretrained ViTs Yield Versatile Representations For Medical Images
Christos Matsoukas
Johan Fredin Haslum
Magnus P Soderberg
Kevin Smith
MedIm
ViT
27
11
0
13 Mar 2023
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic
  Masking of Cancer
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer
Moein Sorkhei
Yue Liu
Hossein Azizpour
E. Azavedo
Karin Dembrower
Dimitra Ntoula
Athanasios Zouzos
Fredrik Strand
Kevin Smith
28
8
0
02 Dec 2021
1