Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.00727
Cited By
Deep Bayesian Bandits: Exploring in Online Personalized Recommendations
3 August 2020
Dalin Guo
S. Ktena
Ferenc Huszár
Pranay K. Myana
Wenzhe Shi
Alykhan Tejani
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Bayesian Bandits: Exploring in Online Personalized Recommendations"
22 / 22 papers shown
Title
Transforming Location Retrieval at Airbnb: A Journey from Heuristics to Reinforcement Learning
Dillon Davis
Huiji Gao
Weiwei Guo
Thomas Legrand
Malay Haldar
Alex Deng
Han Zhao
Liwei He
Sanjeev Katariya
32
0
0
23 Aug 2024
Bayesian Bandit Algorithms with Approximate Inference in Stochastic Linear Bandits
Ziyi Huang
Henry Lam
Haofeng Zhang
33
0
0
20 Jun 2024
Uncertainty of Joint Neural Contextual Bandit
Hongbo Guo
Zheqing Zhu
37
0
0
04 Jun 2024
Epsilon non-Greedy: A Bandit Approach for Unbiased Recommendation via Uniform Data
S.M.F. Sani
Seyed Abbas Hosseini
Hamid R. Rabiee
OffRL
24
1
0
07 Oct 2023
Diversify and Conquer: Bandits and Diversity for an Enhanced E-commerce Homepage Experience
Sangeet Jaiswal
Korah T Malayil
Saif Jawaid
Sreekanth Vempati
21
0
0
25 Sep 2023
Interactive Graph Convolutional Filtering
Jin Zhang
Defu Lian
Hong Xie
Yawen Li
Enhong Chen
27
0
0
04 Sep 2023
Scalable Neural Contextual Bandit for Recommender Systems
Zheqing Zhu
Benjamin Van Roy
OffRL
24
9
0
26 Jun 2023
Reinforcement Learning and Bandits for Speech and Language Processing: Tutorial, Review and Outlook
Baihan Lin
OffRL
AI4TS
28
27
0
24 Oct 2022
Two-Stage Neural Contextual Bandits for Personalised News Recommendation
Mengyan Zhang
Thanh Nguyen-Tang
Fangzhao Wu
Zhenyu He
Xing Xie
Cheng Soon Ong
19
4
0
26 Jun 2022
Fast online inference for nonlinear contextual bandit based on Generative Adversarial Network
Yun-Da Tsai
Shou-De Lin
38
5
0
17 Feb 2022
Evaluating Deep Vs. Wide & Deep Learners As Contextual Bandits For Personalized Email Promo Recommendations
A. A. Kocherzhenko
Nirmal Sobha Kartha
Tengfei Li
Hsin-Yi Shih
Shih
Marco Mandic
Mike Fuller
Arshak Navruzyan
26
0
0
31 Jan 2022
Optimal Regret Is Achievable with Bounded Approximate Inference Error: An Enhanced Bayesian Upper Confidence Bound Framework
Ziyi Huang
H. Lam
A. Meisami
Haofeng Zhang
36
4
0
31 Jan 2022
Top-K Ranking Deep Contextual Bandits for Information Selection Systems
Jade Freeman
Michael Rawson
29
2
0
28 Jan 2022
Adversarial Gradient Driven Exploration for Deep Click-Through Rate Prediction
Kailun Wu
Zhangming Chan
Weijie Bian
Lejian Ren
Shiming Xiang
Shuguang Han
Hongbo Deng
Bo Zheng
16
12
0
21 Dec 2021
Efficient Online Bayesian Inference for Neural Bandits
Gerardo Duran-Martín
Aleyna Kara
Kevin Patrick Murphy
BDL
19
13
0
01 Dec 2021
Deep Upper Confidence Bound Algorithm for Contextual Bandit Ranking of Information Selection
Michael Rawson
Jade Freeman
14
3
0
08 Oct 2021
Online Learning for Recommendations at Grubhub
A. Egg
OffRL
OnRL
29
9
0
15 Jul 2021
Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sampling
Simen Eide
David S. Leslie
A. Frigessi
BDL
OffRL
19
9
0
30 Apr 2021
Exploration in Online Advertising Systems with Deep Uncertainty-Aware Learning
Chao Du
Zhifeng Gao
Shuo Yuan
Lining Gao
Z. Li
Yifan Zeng
Xiaoqiang Zhu
Jian Xu
Kun Gai
Kuang-chih Lee
25
18
0
25 Nov 2020
How Algorithmic Confounding in Recommendation Systems Increases Homogeneity and Decreases Utility
A. Chaney
Brandon M Stewart
Barbara E. Engelhardt
CML
169
313
0
30 Oct 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1