ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.00324
15
3

Improving Skeleton-based Action Recognitionwith Robust Spatial and Temporal Features

1 August 2020
Zeshi Yang
KangKang Yin
    3DPC
ArXivPDFHTML
Abstract

Recently skeleton-based action recognition has made signif-icant progresses in the computer vision community. Most state-of-the-art algorithms are based on Graph Convolutional Networks (GCN), andtarget at improving the network structure of the backbone GCN lay-ers. In this paper, we propose a novel mechanism to learn more robustdiscriminative features in space and time. More specifically, we add aDiscriminative Feature Learning (DFL) branch to the last layers of thenetwork to extract discriminative spatial and temporal features to helpregularize the learning. We also formally advocate the use of Direction-Invariant Features (DIF) as input to the neural networks. We show thataction recognition accuracy can be improved when these robust featuresare learned and used. We compare our results with those of ST-GCNand related methods on four datasets: NTU-RGBD60, NTU-RGBD120,SYSU 3DHOI and Skeleton-Kinetics.

View on arXiv
Comments on this paper