ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.00323
  4. Cited By
Convergence of Sparse Variational Inference in Gaussian Processes
  Regression

Convergence of Sparse Variational Inference in Gaussian Processes Regression

1 August 2020
David R. Burt
C. Rasmussen
Mark van der Wilk
ArXivPDFHTML

Papers citing "Convergence of Sparse Variational Inference in Gaussian Processes Regression"

13 / 13 papers shown
Title
Low-rank computation of the posterior mean in Multi-Output Gaussian Processes
Low-rank computation of the posterior mean in Multi-Output Gaussian Processes
Sebastian Esche
Martin Stoll
38
0
0
30 Apr 2025
Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes
Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes
Yunyue Wei
Vincent Zhuang
Saraswati Soedarmadji
Yanan Sui
126
0
0
31 Dec 2024
Memory-Based Dual Gaussian Processes for Sequential Learning
Memory-Based Dual Gaussian Processes for Sequential Learning
Paul E. Chang
Prakhar Verma
S. T. John
Arno Solin
Mohammad Emtiyaz Khan
GP
20
4
0
06 Jun 2023
Inducing Point Allocation for Sparse Gaussian Processes in
  High-Throughput Bayesian Optimisation
Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation
Henry B. Moss
Sebastian W. Ober
Victor Picheny
30
24
0
24 Jan 2023
Uncertainty quantification for sparse spectral variational
  approximations in Gaussian process regression
Uncertainty quantification for sparse spectral variational approximations in Gaussian process regression
D. Nieman
Botond Szabó
Harry Van Zanten
23
5
0
21 Dec 2022
Numerically Stable Sparse Gaussian Processes via Minimum Separation
  using Cover Trees
Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees
Alexander Terenin
David R. Burt
A. Artemev
Seth Flaxman
Mark van der Wilk
C. Rasmussen
Hong Ge
56
7
0
14 Oct 2022
Memory Safe Computations with XLA Compiler
Memory Safe Computations with XLA Compiler
A. Artemev
Tilman Roeder
Mark van der Wilk
16
8
0
28 Jun 2022
Contraction rates for sparse variational approximations in Gaussian
  process regression
Contraction rates for sparse variational approximations in Gaussian process regression
D. Nieman
Botond Szabó
Harry Van Zanten
41
17
0
22 Sep 2021
The Promises and Pitfalls of Deep Kernel Learning
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCV
BDL
21
107
0
24 Feb 2021
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process
  Regression Using Conjugate Gradients
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process Regression Using Conjugate Gradients
A. Artemev
David R. Burt
Mark van der Wilk
16
18
0
16 Feb 2021
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
13
57
0
08 Nov 2020
Global inducing point variational posteriors for Bayesian neural
  networks and deep Gaussian processes
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
15
60
0
17 May 2020
Sharp analysis of low-rank kernel matrix approximations
Sharp analysis of low-rank kernel matrix approximations
Francis R. Bach
80
277
0
09 Aug 2012
1