Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.15839
Cited By
Robust and Heavy-Tailed Mean Estimation Made Simple, via Regret Minimization
31 July 2020
Samuel B. Hopkins
Jingkai Li
Fred Zhang
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robust and Heavy-Tailed Mean Estimation Made Simple, via Regret Minimization"
25 / 25 papers shown
Title
Learning High-dimensional Gaussians from Censored Data
Arnab Bhattacharyya
C. Daskalakis
Themis Gouleakis
Yuhao Wang
31
0
0
28 Apr 2025
Communication Bounds for the Distributed Experts Problem
Zhihao Jia
Qi Pang
Trung Tran
David Woodruff
Zhihao Zhang
Wenting Zheng
68
0
0
06 Jan 2025
Tolerant Algorithms for Learning with Arbitrary Covariate Shift
Surbhi Goel
Abhishek Shetty
Konstantinos Stavropoulos
Arsen Vasilyan
OOD
36
2
0
04 Jun 2024
Time-Uniform Confidence Spheres for Means of Random Vectors
Ben Chugg
Hongjian Wang
Aaditya Ramdas
53
5
0
14 Nov 2023
Nearly-Linear Time and Streaming Algorithms for Outlier-Robust PCA
Ilias Diakonikolas
D. Kane
Ankit Pensia
Thanasis Pittas
OOD
40
10
0
04 May 2023
Near Optimal Memory-Regret Tradeoff for Online Learning
Binghui Peng
A. Rubinstein
CLL
34
10
0
03 Mar 2023
Improved Space Bounds for Learning with Experts
Anders Aamand
Justin Y. Chen
Huy Le Nguyen
Sandeep Silwal
42
4
0
02 Mar 2023
Robust Estimation under the Wasserstein Distance
Sloan Nietert
Rachel Cummings
Ziv Goldfeld
38
4
0
02 Feb 2023
Robustifying Markowitz
W. Hardle
Yegor Klochkov
Alla Petukhina
Nikita Zhivotovskiy
19
7
0
28 Dec 2022
Outlier-Robust Sparse Mean Estimation for Heavy-Tailed Distributions
Ilias Diakonikolas
D. Kane
Jasper C. H. Lee
Ankit Pensia
30
12
0
29 Nov 2022
Efficient List-Decodable Regression using Batches
Abhimanyu Das
Ayush Jain
Weihao Kong
Rajat Sen
33
4
0
23 Nov 2022
Statistical, Robustness, and Computational Guarantees for Sliced Wasserstein Distances
Sloan Nietert
Ritwik Sadhu
Ziv Goldfeld
Kengo Kato
43
37
0
17 Oct 2022
Improved covariance estimation: optimal robustness and sub-Gaussian guarantees under heavy tails
R. I. Oliveira
Zoraida F. Rico
42
10
0
27 Sep 2022
Online Prediction in Sub-linear Space
Binghui Peng
Fred Zhang
28
16
0
16 Jul 2022
Robust Sparse Mean Estimation via Sum of Squares
Ilias Diakonikolas
D. Kane
Sushrut Karmalkar
Ankit Pensia
Thanasis Pittas
30
21
0
07 Jun 2022
List-Decodable Sparse Mean Estimation
Shiwei Zeng
Jie Shen
37
9
0
28 May 2022
Byzantine-Robust Federated Learning with Optimal Statistical Rates and Privacy Guarantees
Banghua Zhu
Lun Wang
Qi Pang
Shuai Wang
Jiantao Jiao
D. Song
Michael I. Jordan
FedML
98
30
0
24 May 2022
Covariance Estimation: Optimal Dimension-free Guarantees for Adversarial Corruption and Heavy Tails
Pedro Abdalla
Nikita Zhivotovskiy
40
25
0
17 May 2022
Private Robust Estimation by Stabilizing Convex Relaxations
Pravesh Kothari
Pasin Manurangsi
A. Velingker
38
46
0
07 Dec 2021
Outlier-Robust Sparse Estimation via Non-Convex Optimization
Yu Cheng
Ilias Diakonikolas
Rong Ge
Shivam Gupta
D. Kane
Mahdi Soltanolkotabi
52
13
0
23 Sep 2021
Covariance-Aware Private Mean Estimation Without Private Covariance Estimation
Gavin Brown
Marco Gaboardi
Adam D. Smith
Jonathan R. Ullman
Lydia Zakynthinou
FedML
28
48
0
24 Jun 2021
Adversarially robust change point detection
Mengchu Li
Yi Yu
AAML
29
10
0
21 May 2021
Outlier Robust Mean Estimation with Subgaussian Rates via Stability
Ilias Diakonikolas
D. Kane
Ankit Pensia
29
57
0
30 Jul 2020
Robust estimation via generalized quasi-gradients
Banghua Zhu
Jiantao Jiao
Jacob Steinhardt
23
43
0
28 May 2020
Robust subgaussian estimation of a mean vector in nearly linear time
Jules Depersin
Guillaume Lecué
21
92
0
07 Jun 2019
1