ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.15634
  4. Cited By
On the Nature and Types of Anomalies: A Review of Deviations in Data
v1v2v3v4v5 (latest)

On the Nature and Types of Anomalies: A Review of Deviations in Data

30 July 2020
Ralph Foorthuis
ArXiv (abs)PDFHTML

Papers citing "On the Nature and Types of Anomalies: A Review of Deviations in Data"

18 / 18 papers shown
Title
A Typology of Data Anomalies
A Typology of Data Anomalies
Ralph Foorthuis
28
14
0
04 Jul 2021
Algorithmic Frameworks for the Detection of High Density Anomalies
Algorithmic Frameworks for the Detection of High Density Anomalies
Ralph Foorthuis
13
2
0
09 Oct 2020
Current Time Series Anomaly Detection Benchmarks are Flawed and are
  Creating the Illusion of Progress
Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the Illusion of Progress
R. Wu
Eamonn J. Keogh
AI4TS
61
203
0
29 Sep 2020
A Unifying Review of Deep and Shallow Anomaly Detection
A Unifying Review of Deep and Shallow Anomaly Detection
Lukas Ruff
Jacob R. Kauffmann
Robert A. Vandermeulen
G. Montavon
Wojciech Samek
Marius Kloft
Thomas G. Dietterich
Klaus-Robert Muller
UQCV
117
803
0
24 Sep 2020
SECODA: Segmentation- and Combination-Based Detection of Anomalies
SECODA: Segmentation- and Combination-Based Detection of Anomalies
Ralph Foorthuis
18
8
0
16 Aug 2020
The Clever Hans Effect in Anomaly Detection
The Clever Hans Effect in Anomaly Detection
Jacob R. Kauffmann
Lukas Ruff
G. Montavon
Klaus-Robert Muller
AAML
59
32
0
18 Jun 2020
Anomaly Detection in Univariate Time-series: A Survey on the
  State-of-the-Art
Anomaly Detection in Univariate Time-series: A Survey on the State-of-the-Art
Mohammad Braei
Sebastian Wagner
AI4TS
36
194
0
01 Apr 2020
Detecting semantic anomalies
Detecting semantic anomalies
Faruk Ahmed
Aaron Courville
50
83
0
13 Aug 2019
Anomaly Detection in High Dimensional Data
Anomaly Detection in High Dimensional Data
P. D. Talagala
Rob J. Hyndman
K. Smith‐Miles
35
52
0
12 Aug 2019
SpecAE: Spectral AutoEncoder for Anomaly Detection in Attributed
  Networks
SpecAE: Spectral AutoEncoder for Anomaly Detection in Attributed Networks
Yuening Li
Xiao Huang
Jundong Li
Mengnan Du
Na Zou
87
108
0
11 Aug 2019
Explaining Anomalies Detected by Autoencoders Using SHAP
Explaining Anomalies Detected by Autoencoders Using SHAP
Liat Antwarg
Ronnie Mindlin Miller
Bracha Shapira
Lior Rokach
FAttTDI
62
86
0
06 Mar 2019
Deep Learning for Anomaly Detection: A Survey
Deep Learning for Anomaly Detection: A Survey
Raghavendra Chalapathy
Sanjay Chawla
AI4TS
154
1,494
0
10 Jan 2019
Challenging Common Assumptions in the Unsupervised Learning of
  Disentangled Representations
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
124
1,471
0
29 Nov 2018
Deep Learning: A Critical Appraisal
Deep Learning: A Critical Appraisal
G. Marcus
HAIVLM
131
1,042
0
02 Jan 2018
Spatio-Temporal Data Mining: A Survey of Problems and Methods
Spatio-Temporal Data Mining: A Survey of Problems and Methods
G. Atluri
Anuj Karpatne
Vipin Kumar
AI4TS
50
274
0
13 Nov 2017
The Mythos of Model Interpretability
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
183
3,706
0
10 Jun 2016
GLAD: Group Anomaly Detection in Social Media Analysis- Extended
  Abstract
GLAD: Group Anomaly Detection in Social Media Analysis- Extended Abstract
Qi
Rose Yu
Xinran He
Yan Liu
62
134
0
07 Oct 2014
One-Class Support Measure Machines for Group Anomaly Detection
One-Class Support Measure Machines for Group Anomaly Detection
Krikamol Muandet
Bernhard Schölkopf
74
80
0
01 Mar 2013
1