ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.15140
  4. Cited By
Computing Optimal Decision Sets with SAT

Computing Optimal Decision Sets with SAT

29 July 2020
Jinqiang Yu
Alexey Ignatiev
Peter Stuckey
P. L. Bodic
    FAtt
ArXivPDFHTML

Papers citing "Computing Optimal Decision Sets with SAT"

9 / 9 papers shown
Title
An Incremental MaxSAT-based Model to Learn Interpretable and Balanced
  Classification Rules
An Incremental MaxSAT-based Model to Learn Interpretable and Balanced Classification Rules
Antônio Carlos Souza Ferreira Júnior
Thiago Alves Rocha
18
0
0
25 Mar 2024
Logic-Based Explainability in Machine Learning
Logic-Based Explainability in Machine Learning
Sasha Rubin
LRM
XAI
50
39
0
24 Oct 2022
Eliminating The Impossible, Whatever Remains Must Be True
Eliminating The Impossible, Whatever Remains Must Be True
Jinqiang Yu
Alexey Ignatiev
Peter Stuckey
Nina Narodytska
Sasha Rubin
22
23
0
20 Jun 2022
Optimizing Binary Decision Diagrams with MaxSAT for classification
Optimizing Binary Decision Diagrams with MaxSAT for classification
Hao Hu
Marie-José Huguet
Mohamed Siala
22
10
0
21 Mar 2022
Multiclass Optimal Classification Trees with SVM-splits
Multiclass Optimal Classification Trees with SVM-splits
V. Blanco
Alberto Japón
J. Puerto
11
6
0
16 Nov 2021
Model Explanations via the Axiomatic Causal Lens
Gagan Biradar
Vignesh Viswanathan
Yair Zick
XAI
CML
25
1
0
08 Sep 2021
Synthesizing Pareto-Optimal Interpretations for Black-Box Models
Synthesizing Pareto-Optimal Interpretations for Black-Box Models
Hazem Torfah
Shetal Shah
Supratik Chakraborty
S. Akshay
S. Seshia
30
6
0
16 Aug 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand
  Challenges
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
653
0
20 Mar 2021
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
1