Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.13660
Cited By
Learning discrete distributions: user vs item-level privacy
27 July 2020
Yuhan Liu
A. Suresh
Felix X. Yu
Sanjiv Kumar
Michael Riley
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning discrete distributions: user vs item-level privacy"
21 / 21 papers shown
Title
Improved Bounds for Pure Private Agnostic Learning: Item-Level and User-Level Privacy
Bo Li
Wei Wang
Peng Ye
FedML
52
0
0
30 Jul 2024
Differentially Private Assouad, Fano, and Le Cam
Jayadev Acharya
Ziteng Sun
Huanyu Zhang
FedML
38
58
0
14 Apr 2020
Private Mean Estimation of Heavy-Tailed Distributions
Gautam Kamath
Vikrant Singhal
Jonathan R. Ullman
45
99
0
21 Feb 2020
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
92
6,177
0
10 Dec 2019
Generative Models for Effective ML on Private, Decentralized Datasets
S. Augenstein
H. B. McMahan
Daniel Ramage
Swaroop Indra Ramaswamy
Peter Kairouz
Mingqing Chen
Rajiv Mathews
Blaise Agüera y Arcas
SyDa
36
182
0
15 Nov 2019
Differentially private anonymized histograms
A. Suresh
PICV
44
22
0
08 Oct 2019
Differentially Private SQL with Bounded User Contribution
Royce J. Wilson
Celia Yuxin Zhang
William K. C. Lam
Damien Desfontaines
Daniel Simmons-Marengo
Bryant Gipson
51
148
0
04 Sep 2019
Private Hypothesis Selection
Mark Bun
Gautam Kamath
Thomas Steinke
Zhiwei Steven Wu
25
90
0
30 May 2019
Inference under Information Constraints I: Lower Bounds from Chi-Square Contraction
Jayadev Acharya
C. Canonne
Himanshu Tyagi
39
110
0
30 Dec 2018
A General Approach to Adding Differential Privacy to Iterative Training Procedures
H. B. McMahan
Galen Andrew
Ulfar Erlingsson
Steve Chien
Ilya Mironov
Nicolas Papernot
Peter Kairouz
26
192
0
15 Dec 2018
Beyond Inferring Class Representatives: User-Level Privacy Leakage From Federated Learning
Peng Kuang
Mengkai Song
Zhifei Zhang
Yang Song
Qian Wang
Hairong Qi
FedML
38
780
0
03 Dec 2018
Privately Learning High-Dimensional Distributions
Gautam Kamath
Jerry Li
Vikrant Singhal
Jonathan R. Ullman
FedML
81
151
0
01 May 2018
Hadamard Response: Estimating Distributions Privately, Efficiently, and with Little Communication
Jayadev Acharya
Ziteng Sun
Huanyu Zhang
33
148
0
13 Feb 2018
Differentially Private Testing of Identity and Closeness of Discrete Distributions
Jayadev Acharya
Ziteng Sun
Huanyu Zhang
52
74
0
17 Jul 2017
Optimal Schemes for Discrete Distribution Estimation under Locally Differential Privacy
Min Ye
A. Barg
39
178
0
02 Feb 2017
Discrete Distribution Estimation under Local Privacy
Peter Kairouz
Kallista A. Bonawitz
Daniel Ramage
18
327
0
24 Feb 2016
Differentially Private Empirical Risk Minimization: Efficient Algorithms and Tight Error Bounds
Raef Bassily
Adam D. Smith
Abhradeep Thakurta
FedML
82
371
0
27 May 2014
The Composition Theorem for Differential Privacy
Peter Kairouz
Sewoong Oh
Pramod Viswanath
86
677
0
04 Nov 2013
Differentially Private Empirical Risk Minimization
Kamalika Chaudhuri
C. Monteleoni
Anand D. Sarwate
85
1,482
0
01 Dec 2009
A statistical framework for differential privacy
Larry A. Wasserman
Shuheng Zhou
66
482
0
16 Nov 2008
What Can We Learn Privately?
S. Kasiviswanathan
Homin K. Lee
Kobbi Nissim
Sofya Raskhodnikova
Adam D. Smith
88
1,459
0
06 Mar 2008
1