ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.13631
  4. Cited By
Memory-Latency-Accuracy Trade-offs for Continual Learning on a RISC-V
  Extreme-Edge Node

Memory-Latency-Accuracy Trade-offs for Continual Learning on a RISC-V Extreme-Edge Node

22 July 2020
Leonardo Ravaglia
Manuele Rusci
Alessandro Capotondi
Francesco Conti
Lorenzo Pellegrini
Vincenzo Lomonaco
Davide Maltoni
Luca Benini
ArXivPDFHTML

Papers citing "Memory-Latency-Accuracy Trade-offs for Continual Learning on a RISC-V Extreme-Edge Node"

1 / 1 papers shown
Title
A TinyML Platform for On-Device Continual Learning with Quantized Latent
  Replays
A TinyML Platform for On-Device Continual Learning with Quantized Latent Replays
Leonardo Ravaglia
Manuele Rusci
D. Nadalini
Alessandro Capotondi
Francesco Conti
Luca Benini
BDL
41
64
0
20 Oct 2021
1