Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.12856
Cited By
The Case for Strong Scaling in Deep Learning: Training Large 3D CNNs with Hybrid Parallelism
25 July 2020
Yosuke Oyama
N. Maruyama
Nikoli Dryden
Erin McCarthy
P. Harrington
J. Balewski
Satoshi Matsuoka
Peter Nugent
B. Van Essen
3DV
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Case for Strong Scaling in Deep Learning: Training Large 3D CNNs with Hybrid Parallelism"
7 / 7 papers shown
Title
A Survey From Distributed Machine Learning to Distributed Deep Learning
Mohammad Dehghani
Zahra Yazdanparast
20
0
0
11 Jul 2023
RAMP: A Flat Nanosecond Optical Network and MPI Operations for Distributed Deep Learning Systems
Alessandro Ottino
Joshua L. Benjamin
G. Zervas
30
7
0
28 Nov 2022
SOLAR: A Highly Optimized Data Loading Framework for Distributed Training of CNN-based Scientific Surrogates
Baixi Sun
Xiaodong Yu
Chengming Zhang
Jiannan Tian
Sian Jin
K. Iskra
Tao Zhou
Tekin Bicer
Pete Beckman
Dingwen Tao
19
1
0
01 Nov 2022
Improving the Robustness of Federated Learning for Severely Imbalanced Datasets
Debasrita Chakraborty
Ashish Ghosh
FedML
13
2
0
28 Apr 2022
TopoOpt: Co-optimizing Network Topology and Parallelization Strategy for Distributed Training Jobs
Weiyang Wang
Moein Khazraee
Zhizhen Zhong
M. Ghobadi
Zhihao Jia
Dheevatsa Mudigere
Ying Zhang
A. Kewitsch
34
81
0
01 Feb 2022
Clairvoyant Prefetching for Distributed Machine Learning I/O
Nikoli Dryden
Roman Böhringer
Tal Ben-Nun
Torsten Hoefler
31
55
0
21 Jan 2021
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
284
2,890
0
15 Sep 2016
1