Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.12826
Cited By
The Interpolation Phase Transition in Neural Networks: Memorization and Generalization under Lazy Training
25 July 2020
Andrea Montanari
Yiqiao Zhong
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Interpolation Phase Transition in Neural Networks: Memorization and Generalization under Lazy Training"
50 / 74 papers shown
Title
Information-theoretic reduction of deep neural networks to linear models in the overparametrized proportional regime
Francesco Camilli
D. Tieplova
Eleonora Bergamin
Jean Barbier
103
0
0
06 May 2025
High-dimensional Analysis of Knowledge Distillation: Weak-to-Strong Generalization and Scaling Laws
M. E. Ildiz
Halil Alperen Gozeten
Ege Onur Taga
Marco Mondelli
Samet Oymak
54
2
0
24 Oct 2024
MUSO: Achieving Exact Machine Unlearning in Over-Parameterized Regimes
Ruikai Yang
M. He
Zhengbao He
Youmei Qiu
X. Huang
MU
BDL
37
1
0
11 Oct 2024
On the Convergence of FedProx with Extrapolation and Inexact Prox
Hanmin Li
Peter Richtárik
FedML
27
0
0
02 Oct 2024
A General Framework of the Consistency for Large Neural Networks
Haoran Zhan
Yingcun Xia
37
0
0
21 Sep 2024
Learning Analysis of Kernel Ridgeless Regression with Asymmetric Kernel Learning
Fan He
Mingzhe He
Lei Shi
Xiaolin Huang
Johan A. K. Suykens
31
1
0
03 Jun 2024
Bounds for the smallest eigenvalue of the NTK for arbitrary spherical data of arbitrary dimension
Kedar Karhadkar
Michael Murray
Guido Montúfar
32
2
0
23 May 2024
The Positivity of the Neural Tangent Kernel
Luís Carvalho
Joao L. Costa
José Mourao
Gonccalo Oliveira
17
1
0
19 Apr 2024
Analyzing the Neural Tangent Kernel of Periodically Activated Coordinate Networks
Hemanth Saratchandran
Shin-Fang Chng
Simon Lucey
16
1
0
07 Feb 2024
Generalization in Kernel Regression Under Realistic Assumptions
Daniel Barzilai
Ohad Shamir
29
14
0
26 Dec 2023
Analysis of the expected
L
2
L_2
L
2
error of an over-parametrized deep neural network estimate learned by gradient descent without regularization
Selina Drews
Michael Kohler
25
2
0
24 Nov 2023
Weight fluctuations in (deep) linear neural networks and a derivation of the inverse-variance flatness relation
Markus Gross
A. Raulf
Christoph Räth
38
0
0
23 Nov 2023
On the Convergence of Encoder-only Shallow Transformers
Yongtao Wu
Fanghui Liu
Grigorios G. Chrysos
V. Cevher
42
5
0
02 Nov 2023
Infinite Width Graph Neural Networks for Node Regression/ Classification
Yunus Cobanoglu
AI4CE
13
1
0
12 Oct 2023
Why Does Sharpness-Aware Minimization Generalize Better Than SGD?
Zixiang Chen
Junkai Zhang
Yiwen Kou
Xiangning Chen
Cho-Jui Hsieh
Quanquan Gu
24
11
0
11 Oct 2023
What do larger image classifiers memorise?
Michal Lukasik
Vaishnavh Nagarajan
A. S. Rawat
A. Menon
Sanjiv Kumar
30
5
0
09 Oct 2023
Enhancing Kernel Flexibility via Learning Asymmetric Locally-Adaptive Kernels
Fan He
Ming-qian He
Lei Shi
Xiaolin Huang
Johan A. K. Suykens
13
1
0
08 Oct 2023
Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data
Xuran Meng
Difan Zou
Yuan Cao
MLT
29
7
0
03 Oct 2023
Universality of max-margin classifiers
Andrea Montanari
Feng Ruan
Basil Saeed
Youngtak Sohn
26
3
0
29 Sep 2023
Six Lectures on Linearized Neural Networks
Theodor Misiakiewicz
Andrea Montanari
34
12
0
25 Aug 2023
Memory capacity of two layer neural networks with smooth activations
Liam Madden
Christos Thrampoulidis
MLT
13
5
0
03 Aug 2023
Controlling the Inductive Bias of Wide Neural Networks by Modifying the Kernel's Spectrum
Amnon Geifman
Daniel Barzilai
Ronen Basri
Meirav Galun
24
4
0
26 Jul 2023
Fundamental limits of overparametrized shallow neural networks for supervised learning
Francesco Camilli
D. Tieplova
Jean Barbier
27
9
0
11 Jul 2023
Unraveling Projection Heads in Contrastive Learning: Insights from Expansion and Shrinkage
Yu Gui
Cong Ma
Yiqiao Zhong
22
6
0
06 Jun 2023
How Spurious Features Are Memorized: Precise Analysis for Random and NTK Features
Simone Bombari
Marco Mondelli
AAML
19
4
0
20 May 2023
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Eshaan Nichani
Alexandru Damian
Jason D. Lee
MLT
36
13
0
11 May 2023
On the Eigenvalue Decay Rates of a Class of Neural-Network Related Kernel Functions Defined on General Domains
Yicheng Li
Zixiong Yu
Y. Cotronis
Qian Lin
55
13
0
04 May 2023
Kernel interpolation generalizes poorly
Yicheng Li
Haobo Zhang
Qian Lin
29
10
0
28 Mar 2023
Controlled Descent Training
Viktor Andersson
B. Varga
Vincent Szolnoky
Andreas Syrén
Rebecka Jörnsten
Balázs Kulcsár
33
1
0
16 Mar 2023
Benign Overfitting for Two-layer ReLU Convolutional Neural Networks
Yiwen Kou
Zi-Yuan Chen
Yuanzhou Chen
Quanquan Gu
MLT
49
12
0
07 Mar 2023
High-dimensional analysis of double descent for linear regression with random projections
Francis R. Bach
26
33
0
02 Mar 2023
Learning time-scales in two-layers neural networks
Raphael Berthier
Andrea Montanari
Kangjie Zhou
36
33
0
28 Feb 2023
Some Fundamental Aspects about Lipschitz Continuity of Neural Networks
Grigory Khromov
Sidak Pal Singh
24
7
0
21 Feb 2023
Generalization Ability of Wide Neural Networks on
R
\mathbb{R}
R
Jianfa Lai
Manyun Xu
Rui Chen
Qi-Rong Lin
13
21
0
12 Feb 2023
Beyond the Universal Law of Robustness: Sharper Laws for Random Features and Neural Tangent Kernels
Simone Bombari
Shayan Kiyani
Marco Mondelli
AAML
28
10
0
03 Feb 2023
ResMem: Learn what you can and memorize the rest
Zitong Yang
Michal Lukasik
Vaishnavh Nagarajan
Zong-xiao Li
A. S. Rawat
Manzil Zaheer
A. Menon
Surinder Kumar
VLM
32
8
0
03 Feb 2023
Bayesian Interpolation with Deep Linear Networks
Boris Hanin
Alexander Zlokapa
34
25
0
29 Dec 2022
Improved Convergence Guarantees for Shallow Neural Networks
A. Razborov
ODL
25
1
0
05 Dec 2022
Dense Hebbian neural networks: a replica symmetric picture of supervised learning
E. Agliari
L. Albanese
Francesco Alemanno
Andrea Alessandrelli
Adriano Barra
F. Giannotti
Daniele Lotito
D. Pedreschi
11
15
0
25 Nov 2022
Overparameterized random feature regression with nearly orthogonal data
Zhichao Wang
Yizhe Zhu
15
3
0
11 Nov 2022
Finite Sample Identification of Wide Shallow Neural Networks with Biases
M. Fornasier
T. Klock
Marco Mondelli
Michael Rauchensteiner
17
6
0
08 Nov 2022
Mean-field analysis for heavy ball methods: Dropout-stability, connectivity, and global convergence
Diyuan Wu
Vyacheslav Kungurtsev
Marco Mondelli
15
3
0
13 Oct 2022
Generalization Properties of NAS under Activation and Skip Connection Search
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
V. Cevher
AI4CE
15
14
0
15 Sep 2022
Multiple Descent in the Multiple Random Feature Model
Xuran Meng
Jianfeng Yao
Yuan Cao
26
7
0
21 Aug 2022
Intersection of Parallels as an Early Stopping Criterion
Ali Vardasbi
Maarten de Rijke
Mostafa Dehghani
MoMe
33
5
0
19 Aug 2022
On the generalization of learning algorithms that do not converge
N. Chandramoorthy
Andreas Loukas
Khashayar Gatmiry
Stefanie Jegelka
MLT
14
11
0
16 Aug 2022
Adaptive Step-Size Methods for Compressed SGD
Adarsh M. Subramaniam
A. Magesh
V. Veeravalli
14
1
0
20 Jul 2022
Lazy Estimation of Variable Importance for Large Neural Networks
Yue Gao
Abby Stevens
Rebecca Willett
Garvesh Raskutti
33
4
0
19 Jul 2022
Overparametrized linear dimensionality reductions: From projection pursuit to two-layer neural networks
Andrea Montanari
Kangjie Zhou
16
2
0
14 Jun 2022
Identifying good directions to escape the NTK regime and efficiently learn low-degree plus sparse polynomials
Eshaan Nichani
Yunzhi Bai
Jason D. Lee
24
10
0
08 Jun 2022
1
2
Next