ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.12803
10
35

Joint Mind Modeling for Explanation Generation in Complex Human-Robot Collaborative Tasks

24 July 2020
Xiaofeng Gao
Ran Gong
Yizhou Zhao
Shu Wang
Tianmin Shu
Song-Chun Zhu
ArXivPDFHTML
Abstract

Human collaborators can effectively communicate with their partners to finish a common task by inferring each other's mental states (e.g., goals, beliefs, and desires). Such mind-aware communication minimizes the discrepancy among collaborators' mental states, and is crucial to the success in human ad-hoc teaming. We believe that robots collaborating with human users should demonstrate similar pedagogic behavior. Thus, in this paper, we propose a novel explainable AI (XAI) framework for achieving human-like communication in human-robot collaborations, where the robot builds a hierarchical mind model of the human user and generates explanations of its own mind as a form of communications based on its online Bayesian inference of the user's mental state. To evaluate our framework, we conduct a user study on a real-time human-robot cooking task. Experimental results show that the generated explanations of our approach significantly improves the collaboration performance and user perception of the robot. Code and video demos are available on our project website: https://xfgao.github.io/xCookingWeb/.

View on arXiv
Comments on this paper