ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.12285
  4. Cited By
MLJ: A Julia package for composable machine learning

MLJ: A Julia package for composable machine learning

23 July 2020
Anthony D. Blaom
Franz J. Király
Thibaut Lienart
Yiannis Simillides
Diego Arenas
Sebastian J. Vollmer
    VLM
ArXivPDFHTML

Papers citing "MLJ: A Julia package for composable machine learning"

8 / 8 papers shown
Title
A knowledge-driven AutoML architecture
A knowledge-driven AutoML architecture
C. Cofaru
Johan Loeckx
23
0
0
28 Nov 2023
Explaining Black-Box Models through Counterfactuals
Explaining Black-Box Models through Counterfactuals
Patrick Altmeyer
A. V. Deursen
Cynthia C. S. Liem
CML
LRM
34
2
0
14 Aug 2023
OutlierDetection.jl: A modular outlier detection ecosystem for the Julia
  programming language
OutlierDetection.jl: A modular outlier detection ecosystem for the Julia programming language
David Muhr
M. Affenzeller
Anthony D. Blaom
27
3
0
08 Nov 2022
A Review of Open Source Software Tools for Time Series Analysis
A Review of Open Source Software Tools for Time Series Analysis
Yunus Parvej Faniband
I. Ishak
S. M. Sait
AI4TS
19
6
0
10 Mar 2022
How to avoid machine learning pitfalls: a guide for academic researchers
How to avoid machine learning pitfalls: a guide for academic researchers
M. Lones
VLM
FaML
OnRL
62
77
0
05 Aug 2021
EBIC.JL -- an Efficient Implementation of Evolutionary Biclustering
  Algorithm in Julia
EBIC.JL -- an Efficient Implementation of Evolutionary Biclustering Algorithm in Julia
Pawel Renc
Patryk Orzechowski
A. Byrski
Jarosław Wąs
J. Moore
24
4
0
03 May 2021
GeCo: Quality Counterfactual Explanations in Real Time
GeCo: Quality Counterfactual Explanations in Real Time
Maximilian Schleich
Zixuan Geng
Yihong Zhang
D. Suciu
46
61
0
05 Jan 2021
Foundations of Bayesian Learning from Synthetic Data
Foundations of Bayesian Learning from Synthetic Data
H. Wilde
Jack Jewson
Sebastian J. Vollmer
Chris Holmes
17
15
0
16 Nov 2020
1