ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.12248
  4. Cited By
Are Visual Explanations Useful? A Case Study in Model-in-the-Loop
  Prediction

Are Visual Explanations Useful? A Case Study in Model-in-the-Loop Prediction

23 July 2020
Eric Chu
D. Roy
Jacob Andreas
    FAtt
    LRM
ArXivPDFHTML

Papers citing "Are Visual Explanations Useful? A Case Study in Model-in-the-Loop Prediction"

14 / 14 papers shown
Title
Can Interpretability Layouts Influence Human Perception of Offensive Sentences?
Can Interpretability Layouts Influence Human Perception of Offensive Sentences?
Thiago Freitas dos Santos
Nardine Osman
Marco Schorlemmer
24
0
0
01 Mar 2024
Improving Human-AI Collaboration With Descriptions of AI Behavior
Improving Human-AI Collaboration With Descriptions of AI Behavior
Ángel Alexander Cabrera
Adam Perer
Jason I. Hong
35
34
0
06 Jan 2023
On the Relationship Between Explanation and Prediction: A Causal View
On the Relationship Between Explanation and Prediction: A Causal View
Amir-Hossein Karimi
Krikamol Muandet
Simon Kornblith
Bernhard Schölkopf
Been Kim
FAtt
CML
37
14
0
13 Dec 2022
Visual correspondence-based explanations improve AI robustness and
  human-AI team accuracy
Visual correspondence-based explanations improve AI robustness and human-AI team accuracy
Giang Nguyen
Mohammad Reza Taesiri
Anh Totti Nguyen
30
42
0
26 Jul 2022
A Meta-Analysis of the Utility of Explainable Artificial Intelligence in
  Human-AI Decision-Making
A Meta-Analysis of the Utility of Explainable Artificial Intelligence in Human-AI Decision-Making
Max Schemmer
Patrick Hemmer
Maximilian Nitsche
Niklas Kühl
Michael Vossing
24
56
0
10 May 2022
Do Users Benefit From Interpretable Vision? A User Study, Baseline, And
  Dataset
Do Users Benefit From Interpretable Vision? A User Study, Baseline, And Dataset
Leon Sixt
M. Schuessler
Oana-Iuliana Popescu
Philipp Weiß
Tim Landgraf
FAtt
29
14
0
25 Apr 2022
Explain, Edit, and Understand: Rethinking User Study Design for
  Evaluating Model Explanations
Explain, Edit, and Understand: Rethinking User Study Design for Evaluating Model Explanations
Siddhant Arora
Danish Pruthi
Norman M. Sadeh
William W. Cohen
Zachary Chase Lipton
Graham Neubig
FAtt
40
38
0
17 Dec 2021
Teaching Humans When To Defer to a Classifier via Exemplars
Teaching Humans When To Defer to a Classifier via Exemplars
Hussein Mozannar
Arvindmani Satyanarayan
David Sontag
36
43
0
22 Nov 2021
Intelligent Decision Assistance Versus Automated Decision-Making:
  Enhancing Knowledge Work Through Explainable Artificial Intelligence
Intelligent Decision Assistance Versus Automated Decision-Making: Enhancing Knowledge Work Through Explainable Artificial Intelligence
Max Schemmer
Niklas Kühl
G. Satzger
16
13
0
28 Sep 2021
Exploring The Role of Local and Global Explanations in Recommender
  Systems
Exploring The Role of Local and Global Explanations in Recommender Systems
Marissa Radensky
Doug Downey
Kyle Lo
Z. Popović
Daniel S. Weld University of Washington
LRM
13
20
0
27 Sep 2021
Explaining the Road Not Taken
Explaining the Road Not Taken
Hua Shen
Ting-Hao 'Kenneth' Huang
FAtt
XAI
27
9
0
27 Mar 2021
Do Input Gradients Highlight Discriminative Features?
Do Input Gradients Highlight Discriminative Features?
Harshay Shah
Prateek Jain
Praneeth Netrapalli
AAML
FAtt
23
57
0
25 Feb 2021
Exemplary Natural Images Explain CNN Activations Better than
  State-of-the-Art Feature Visualization
Exemplary Natural Images Explain CNN Activations Better than State-of-the-Art Feature Visualization
Judy Borowski
Roland S. Zimmermann
Judith Schepers
Robert Geirhos
Thomas S. A. Wallis
Matthias Bethge
Wieland Brendel
FAtt
39
7
0
23 Oct 2020
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
257
3,690
0
28 Feb 2017
1