ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.12167
  4. Cited By
Latent-space time evolution of non-intrusive reduced-order models using
  Gaussian process emulation

Latent-space time evolution of non-intrusive reduced-order models using Gaussian process emulation

23 July 2020
R. Maulik
T. Botsas
Nesar Ramachandra
L. Mason
Indranil Pan
ArXivPDFHTML

Papers citing "Latent-space time evolution of non-intrusive reduced-order models using Gaussian process emulation"

3 / 3 papers shown
Title
Quantifying uncertainty for deep learning based forecasting and
  flow-reconstruction using neural architecture search ensembles
Quantifying uncertainty for deep learning based forecasting and flow-reconstruction using neural architecture search ensembles
R. Maulik
Romain Egele
Krishnan Raghavan
Prasanna Balaprakash
UQCV
AI4TS
AI4CE
35
6
0
20 Feb 2023
An AI-based Domain-Decomposition Non-Intrusive Reduced-Order Model for
  Extended Domains applied to Multiphase Flow in Pipes
An AI-based Domain-Decomposition Non-Intrusive Reduced-Order Model for Extended Domains applied to Multiphase Flow in Pipes
Claire E. Heaney
Zef Wolffs
Jón Atli Tómasson
L. Kahouadji
P. Salinas
A. Nicolle
Omar K. Matar
Ionel M. Navon
N. Srinil
Christopher C. Pain
AI4CE
34
21
0
13 Feb 2022
Uncertainty quantification of a three-dimensional in-stent restenosis
  model with surrogate modelling
Uncertainty quantification of a three-dimensional in-stent restenosis model with surrogate modelling
Dongwei Ye
Pavel S. Zun
Valeria Krzhizhanovskaya
Alfons G. Hoekstra
27
1
0
11 Nov 2021
1