ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.11412
  4. Cited By
Coarse Graining Molecular Dynamics with Graph Neural Networks

Coarse Graining Molecular Dynamics with Graph Neural Networks

22 July 2020
B. Husic
N. Charron
Dominik Lemm
Jiang Wang
Adria Pérez
Maciej Majewski
Andreas Krämer
Yaoyi Chen
Simon Olsson
Gianni de Fabritiis
Frank Noé
C. Clementi
    AI4CE
ArXivPDFHTML

Papers citing "Coarse Graining Molecular Dynamics with Graph Neural Networks"

19 / 19 papers shown
Title
Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework Without Data
Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework Without Data
Maximilian Stupp
P. S. Koutsourelakis
40
0
0
29 Apr 2025
Foundation Inference Models for Markov Jump Processes
Foundation Inference Models for Markov Jump Processes
David Berghaus
K. Cvejoski
Patrick Seifner
C. Ojeda
Ramses J. Sanchez
42
1
0
10 Jun 2024
Predicting solvation free energies with an implicit solvent machine learning potential
Predicting solvation free energies with an implicit solvent machine learning potential
Sebastien Röcken
A. F. Burnet
J. Zavadlav
AI4Cl
AI4CE
68
3
0
31 May 2024
DiAMoNDBack: Diffusion-denoising Autoregressive Model for
  Non-Deterministic Backmapping of Cα Protein Traces
DiAMoNDBack: Diffusion-denoising Autoregressive Model for Non-Deterministic Backmapping of Cα Protein Traces
Michael S. Jones
Kirill Shmilovich
Andrew L. Ferguson
DiffM
36
12
0
23 Jul 2023
Implicit Transfer Operator Learning: Multiple Time-Resolution Surrogates
  for Molecular Dynamics
Implicit Transfer Operator Learning: Multiple Time-Resolution Surrogates for Molecular Dynamics
M. Schreiner
Ole Winther
Simon Olsson
OOD
AI4CE
41
13
0
29 May 2023
On the Relationships between Graph Neural Networks for the Simulation of
  Physical Systems and Classical Numerical Methods
On the Relationships between Graph Neural Networks for the Simulation of Physical Systems and Classical Numerical Methods
Artur P. Toshev
Ludger Paehler
A. Panizza
Nikolaus A. Adams
AI4CE
PINN
11
5
0
31 Mar 2023
EPR-Net: Constructing non-equilibrium potential landscape via a
  variational force projection formulation
EPR-Net: Constructing non-equilibrium potential landscape via a variational force projection formulation
Yue Zhao
Wei Zhang
Tiejun Li
DiffM
11
8
0
05 Jan 2023
Scalable Bayesian Uncertainty Quantification for Neural Network
  Potentials: Promise and Pitfalls
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
J. Zavadlav
35
21
0
15 Dec 2022
Machine Learning Coarse-Grained Potentials of Protein Thermodynamics
Machine Learning Coarse-Grained Potentials of Protein Thermodynamics
Maciej Majewski
Adriana Pérez
Philipp Thölke
Stefan Doerr
N. Charron
T. Giorgino
B. Husic
C. Clementi
Frank Noé
Gianni de Fabritiis
AI4CE
19
70
0
14 Dec 2022
Developing Machine-Learned Potentials for Coarse-Grained Molecular
  Simulations: Challenges and Pitfalls
Developing Machine-Learned Potentials for Coarse-Grained Molecular Simulations: Challenges and Pitfalls
E. Ricci
George Giannakopoulos
V. Karkaletsis
D. Theodorou
Niki Vergadou
AI4CE
25
9
0
26 Sep 2022
Graph neural networks for materials science and chemistry
Graph neural networks for materials science and chemistry
Patrick Reiser
Marlen Neubert
André Eberhard
Luca Torresi
Chen Zhou
...
Houssam Metni
Clint van Hoesel
Henrik Schopmans
T. Sommer
Pascal Friederich
GNN
AI4CE
45
373
0
05 Aug 2022
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular
  Potentials
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials
Philipp Thölke
Gianni de Fabritiis
AI4CE
34
185
0
05 Feb 2022
GraphVAMPNet, using graph neural networks and variational approach to
  markov processes for dynamical modeling of biomolecules
GraphVAMPNet, using graph neural networks and variational approach to markov processes for dynamical modeling of biomolecules
Mahdi Ghorbani
Samarjeet Prasad
Jeffery B. Klauda
B. Brooks
GNN
22
30
0
12 Jan 2022
Graph Neural Networks Accelerated Molecular Dynamics
Graph Neural Networks Accelerated Molecular Dynamics
Zijie Li
Kazem Meidani
Prakarsh Yadav
A. Farimani
GNN
AI4CE
18
53
0
06 Dec 2021
Learning neural network potentials from experimental data via
  Differentiable Trajectory Reweighting
Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting
Stephan Thaler
J. Zavadlav
20
66
0
02 Jun 2021
Artificial intelligence techniques for integrative structural biology of
  intrinsically disordered proteins
Artificial intelligence techniques for integrative structural biology of intrinsically disordered proteins
A. Ramanathan
Henglong Ma
Akash Parvatikar
C. Chennubhotla
AI4CE
18
40
0
01 Dec 2020
Relevance of Rotationally Equivariant Convolutions for Predicting
  Molecular Properties
Relevance of Rotationally Equivariant Convolutions for Predicting Molecular Properties
Benjamin Kurt Miller
Mario Geiger
Tess E. Smidt
Frank Noé
16
75
0
19 Aug 2020
Variational Koopman models: slow collective variables and molecular
  kinetics from short off-equilibrium simulations
Variational Koopman models: slow collective variables and molecular kinetics from short off-equilibrium simulations
Hao Wu
Feliks Nuske
Fabian Paul
Stefan Klus
P. Koltai
Frank Noé
107
126
0
20 Oct 2016
Estimation and uncertainty of reversible Markov models
Estimation and uncertainty of reversible Markov models
Benjamin Trendelkamp-Schroer
Hao Wu
Fabian Paul
Frank Noé
68
129
0
19 Jul 2015
1