ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.10663
6
13

Reconfigurable Behavior Trees: Towards an Executive Framework Meeting High-level Decision Making and Control Layer Features

21 July 2020
Pilar de la Cruz
J. Piater
Matteo Saveriano
ArXivPDFHTML
Abstract

Behavior Trees constitute a widespread AI tool which has been successfully spun out in robotics. Their advantages include simplicity, modularity, and reusability of code. However, Behavior Trees remain a high-level decision making engine; control features cannot be easily integrated. This paper proposes the Reconfigurable Behavior Trees (RBTs), an extension of the traditional BTs that considers physical constraints from the robotic environment in the decision making process. We endow RBTs with continuous sensory information that permits the online monitoring of the task execution. The resulting stimulus-driven architecture is capable of dynamically handling changes in the executive context while keeping the execution time low. The proposed framework is evaluated on a set of robotic experiments. The results show that RBTs are a promising approach for robotic task representation, monitoring, and execution.

View on arXiv
Comments on this paper