ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.10442
  4. Cited By
Unlocking the Potential of Deep Counterfactual Value Networks

Unlocking the Potential of Deep Counterfactual Value Networks

20 July 2020
Ryan Zarick
Bryan Pellegrino
Noam Brown
Caleb Banister
    OffRL
ArXivPDFHTML

Papers citing "Unlocking the Potential of Deep Counterfactual Value Networks"

10 / 10 papers shown
Title
Single Deep Counterfactual Regret Minimization
Single Deep Counterfactual Regret Minimization
Eric Steinberger
BDL
40
40
0
22 Jan 2019
Double Neural Counterfactual Regret Minimization
Double Neural Counterfactual Regret Minimization
Hui Li
Kailiang Hu
Zhibang Ge
Tao Jiang
Yuan Qi
Le Song
51
52
0
27 Dec 2018
Deep Counterfactual Regret Minimization
Deep Counterfactual Regret Minimization
Noam Brown
Adam Lerer
Sam Gross
Tuomas Sandholm
102
215
0
01 Nov 2018
Solving Large Sequential Games with the Excessive Gap Technique
Solving Large Sequential Games with the Excessive Gap Technique
Christian Kroer
Gabriele Farina
Tuomas Sandholm
144
38
0
07 Oct 2018
Solving Imperfect-Information Games via Discounted Regret Minimization
Solving Imperfect-Information Games via Discounted Regret Minimization
Noam Brown
Tuomas Sandholm
126
167
0
11 Sep 2018
Depth-Limited Solving for Imperfect-Information Games
Depth-Limited Solving for Imperfect-Information Games
Noam Brown
Tuomas Sandholm
Brandon Amos
60
80
0
21 May 2018
Safe and Nested Subgame Solving for Imperfect-Information Games
Safe and Nested Subgame Solving for Imperfect-Information Games
Noam Brown
Tuomas Sandholm
74
182
0
08 May 2017
DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker
DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker
Matej Moravcík
Martin Schmid
Neil Burch
Viliam Lisý
Dustin Morrill
Nolan Bard
Trevor Davis
Kevin Waugh
Michael Bradley Johanson
Michael Bowling
BDL
143
908
0
06 Jan 2017
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.5K
149,842
0
22 Dec 2014
Solving Games with Functional Regret Estimation
Solving Games with Functional Regret Estimation
Kevin Waugh
Dustin Morrill
J. Andrew Bagnell
Michael Bowling
OffRL
62
58
0
28 Nov 2014
1