ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.09605
  4. Cited By
A Flexible Optimization Framework for Regularized Matrix-Tensor
  Factorizations with Linear Couplings

A Flexible Optimization Framework for Regularized Matrix-Tensor Factorizations with Linear Couplings

19 July 2020
Carla Schenker
Jérémy E. Cohen
E. Acar
ArXivPDFHTML

Papers citing "A Flexible Optimization Framework for Regularized Matrix-Tensor Factorizations with Linear Couplings"

5 / 5 papers shown
Title
Generalized Canonical Polyadic Tensor Decomposition
Generalized Canonical Polyadic Tensor Decomposition
David Hong
T. Kolda
J. Duersch
48
124
0
22 Aug 2018
COPA: Constrained PARAFAC2 for Sparse & Large Datasets
COPA: Constrained PARAFAC2 for Sparse & Large Datasets
Ardavan Afshar
Ioakeim Perros
Evangelos E. Papalexakis
Elizabeth Searles
Joyce C. Ho
Jimeng Sun
44
42
0
12 Mar 2018
Flexible Multi-layer Sparse Approximations of Matrices and Applications
Flexible Multi-layer Sparse Approximations of Matrices and Applications
Luc Le Magoarou
Rémi Gribonval
59
48
0
24 Jun 2015
A Flexible and Efficient Algorithmic Framework for Constrained Matrix
  and Tensor Factorization
A Flexible and Efficient Algorithmic Framework for Constrained Matrix and Tensor Factorization
Kejun Huang
N. Sidiropoulos
A. Liavas
44
172
0
13 Jun 2015
All-at-once Optimization for Coupled Matrix and Tensor Factorizations
All-at-once Optimization for Coupled Matrix and Tensor Factorizations
E. Acar
T. Kolda
Daniel M. Dunlavy
80
291
0
17 May 2011
1