ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.08939
  4. Cited By
Geometric Correspondence Fields: Learned Differentiable Rendering for 3D
  Pose Refinement in the Wild

Geometric Correspondence Fields: Learned Differentiable Rendering for 3D Pose Refinement in the Wild

17 July 2020
Alexander Grabner
Yaming Wang
Peizhao Zhang
Peihong Guo
Tong Xiao
Peter Vajda
P. Roth
Vincent Lepetit
    3DH
ArXivPDFHTML

Papers citing "Geometric Correspondence Fields: Learned Differentiable Rendering for 3D Pose Refinement in the Wild"

4 / 4 papers shown
Title
Personalized 3D Human Pose and Shape Refinement
Personalized 3D Human Pose and Shape Refinement
Tom Wehrbein
Bodo Rosenhahn
Iain A. Matthews
Carsten Stoll
3DH
33
1
0
18 Mar 2024
RNNPose: Recurrent 6-DoF Object Pose Refinement with Robust
  Correspondence Field Estimation and Pose Optimization
RNNPose: Recurrent 6-DoF Object Pose Refinement with Robust Correspondence Field Estimation and Pose Optimization
Yan Xu
Junyi Lin
Guofeng Zhang
Xiaogang Wang
Hongsheng Li
37
58
0
24 Mar 2022
6-DoF Object Pose from Semantic Keypoints
6-DoF Object Pose from Semantic Keypoints
Georgios Pavlakos
Xiaowei Zhou
Aaron Chan
Konstantinos G. Derpanis
Kostas Daniilidis
105
392
0
14 Mar 2017
Learning a Probabilistic Latent Space of Object Shapes via 3D
  Generative-Adversarial Modeling
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Jiajun Wu
Chengkai Zhang
Tianfan Xue
Bill Freeman
J. Tenenbaum
GAN
189
1,941
0
24 Oct 2016
1